基于混合地理加權(quán)回歸的中國省域碳生產(chǎn)率影響因素分析
發(fā)布時間:2018-10-08 07:12
【摘要】:低碳經(jīng)濟成為應(yīng)對全球氣候變化的根本途徑。低碳經(jīng)濟實質(zhì)上就是要求單位碳排放產(chǎn)生更多的經(jīng)濟產(chǎn)出,即提高碳生產(chǎn)率。涉及地區(qū)低碳發(fā)展的影響因素很多,具有顯著空間相關(guān)性的因素和無顯著空間相關(guān)性的因素往往同時作用,在構(gòu)建模型時需要綜合考慮。本文在空間自相關(guān)方法的基礎(chǔ)上首先確定了中國省域碳生產(chǎn)率影響因素的空間相關(guān)性,其中產(chǎn)業(yè)結(jié)構(gòu)是全局變量,能源結(jié)構(gòu)、技術(shù)進步和勞動生產(chǎn)率均是局域變量,再通過混合地理加權(quán)回歸估計了"十一五"末和"十二五"末4個影響因素的回歸參數(shù)值并作分析。研究結(jié)果顯示:(1)能源結(jié)構(gòu)(火電比重)對于碳生產(chǎn)率具有負向影響,而產(chǎn)業(yè)結(jié)構(gòu)(服務(wù)業(yè)比重)、技術(shù)進步(年專利授權(quán)數(shù)量)和勞動生產(chǎn)率(單位從業(yè)人員的工業(yè)增加值)對于碳生產(chǎn)率具有正向影響;從回歸參數(shù)估計值來看,產(chǎn)業(yè)結(jié)構(gòu)的影響程度占據(jù)主導地位,其次是能源結(jié)構(gòu),再次是技術(shù)進步,最后為勞動生產(chǎn)率;(2)產(chǎn)業(yè)結(jié)構(gòu)對碳生產(chǎn)率的正向影響程度在增大,能源結(jié)構(gòu)對碳生產(chǎn)率的負向影響在空間分布上呈現(xiàn)出明顯的自南向北遞減特征,而技術(shù)進步和勞動生產(chǎn)率的正向影響則呈現(xiàn)出明顯的自北向南遞減特征;"十一五"末到"十二五"末,總體上能源結(jié)構(gòu)和勞動生產(chǎn)率對碳生產(chǎn)率的影響程度在減小,而技術(shù)進步的影響在增大。最后,提出了相關(guān)的政策建議。
[Abstract]:Low-carbon economy is the fundamental way to deal with global climate change. Low carbon economy essentially requires more economic output per unit of carbon emissions, that is, increasing carbon productivity. There are many factors affecting the development of low carbon in the region. The factors with significant spatial correlation and those without significant spatial correlation often act simultaneously, so it is necessary to consider comprehensively when building the model. Based on the spatial autocorrelation method, this paper first determines the spatial correlation of the influencing factors of China's provincial carbon productivity, in which the industrial structure is a global variable, and the energy structure, technological progress and labor productivity are local variables. The regression parameters of the four influencing factors in the end of the Eleventh Five-Year Plan and the end of the 12th Five-Year Plan were estimated and analyzed by mixed geographical weighted regression. The results show that: (1) the energy structure (specific gravity of thermal power) has a negative effect on carbon productivity. Industrial structure (proportion of service industry), technological progress (number of annual patent license) and labor productivity (industrial added value of unit employee) have positive effects on carbon productivity. The influence of industrial structure is dominant, followed by energy structure, technological progress, and finally labor productivity. (2) the positive impact of industrial structure on carbon productivity is increasing. The negative effect of energy structure on carbon productivity shows an obvious downward trend from south to north in spatial distribution. The positive effects of technological progress and labor productivity are obviously decreasing from north to south, and from the end of the 11th Five-Year Plan to the end of the 12th Five-Year Plan, the overall impact of energy structure and labor productivity on carbon productivity is decreasing. And the impact of technological progress is increasing. Finally, the relevant policy recommendations are put forward.
【作者單位】: 中國科學院區(qū)域可持續(xù)發(fā)展分析與模擬重點實驗室;中國科學院地理科學與資源研究所;中國科學院大學資源與環(huán)境學院;
【基金】:中華人民共和國科學技術(shù)部國家重點研發(fā)計劃項目(2016YFA0602804) 國家自然科學基金項目(41430636;41571518)
【分類號】:F832.5;X196
本文編號:2255888
[Abstract]:Low-carbon economy is the fundamental way to deal with global climate change. Low carbon economy essentially requires more economic output per unit of carbon emissions, that is, increasing carbon productivity. There are many factors affecting the development of low carbon in the region. The factors with significant spatial correlation and those without significant spatial correlation often act simultaneously, so it is necessary to consider comprehensively when building the model. Based on the spatial autocorrelation method, this paper first determines the spatial correlation of the influencing factors of China's provincial carbon productivity, in which the industrial structure is a global variable, and the energy structure, technological progress and labor productivity are local variables. The regression parameters of the four influencing factors in the end of the Eleventh Five-Year Plan and the end of the 12th Five-Year Plan were estimated and analyzed by mixed geographical weighted regression. The results show that: (1) the energy structure (specific gravity of thermal power) has a negative effect on carbon productivity. Industrial structure (proportion of service industry), technological progress (number of annual patent license) and labor productivity (industrial added value of unit employee) have positive effects on carbon productivity. The influence of industrial structure is dominant, followed by energy structure, technological progress, and finally labor productivity. (2) the positive impact of industrial structure on carbon productivity is increasing. The negative effect of energy structure on carbon productivity shows an obvious downward trend from south to north in spatial distribution. The positive effects of technological progress and labor productivity are obviously decreasing from north to south, and from the end of the 11th Five-Year Plan to the end of the 12th Five-Year Plan, the overall impact of energy structure and labor productivity on carbon productivity is decreasing. And the impact of technological progress is increasing. Finally, the relevant policy recommendations are put forward.
【作者單位】: 中國科學院區(qū)域可持續(xù)發(fā)展分析與模擬重點實驗室;中國科學院地理科學與資源研究所;中國科學院大學資源與環(huán)境學院;
【基金】:中華人民共和國科學技術(shù)部國家重點研發(fā)計劃項目(2016YFA0602804) 國家自然科學基金項目(41430636;41571518)
【分類號】:F832.5;X196
【相似文獻】
相關(guān)期刊論文 前3條
1 劉玲;丁浩;;提高我國碳生產(chǎn)率面臨的挑戰(zhàn)及對策研究[J];價值工程;2010年14期
2 張麗峰;;碳生產(chǎn)率的經(jīng)濟學背景及其內(nèi)涵分析[J];經(jīng)濟問題探索;2013年05期
3 瞿明凱;李衛(wèi)東;張傳榮;黃標;;地理加權(quán)回歸及其在土壤和環(huán)境科學上的應(yīng)用前景[J];土壤;2014年01期
相關(guān)重要報紙文章 前1條
1 本報首席記者 任荃 本報實習生 趙方宇;碳生產(chǎn)率 未來經(jīng)濟“緊箍咒”[N];文匯報;2009年
相關(guān)碩士學位論文 前1條
1 王殿武;中國省際工業(yè)綠色全要素生產(chǎn)率的測度及空間效應(yīng)[D];吉林大學;2014年
,本文編號:2255888
本文鏈接:http://www.sikaile.net/jingjilunwen/jingjililun/2255888.html
最近更新
教材專著