基于單元模態(tài)應(yīng)變能和遺傳算法功能梯度Timoshenko梁和高階剪切梁的結(jié)構(gòu)損傷識(shí)別研究
本文選題:功能梯度梁式結(jié)構(gòu) 切入點(diǎn):Timoshenko梁 出處:《廣西大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:功能梯度材料(FGM)作為一種性能獨(dú)特優(yōu)良的新型材料,由不同材料組分在宏觀上沿空間某一方向呈梯度非均勻連續(xù)變化,其材料的宏觀性能也呈連續(xù)變化。功能梯度材料在航空航天、土木工程、能源、傳感器、光電等眾多領(lǐng)域得到了進(jìn)一步發(fā)展和應(yīng)用,F(xiàn)役結(jié)構(gòu)和功能梯度材料結(jié)構(gòu)在服役過(guò)程中由于受到外界條件作用導(dǎo)致結(jié)構(gòu)發(fā)生損傷,可靠度下降,甚至導(dǎo)致事故發(fā)生,因此在工程中需及時(shí)評(píng)定結(jié)構(gòu)的健康狀況,識(shí)別出結(jié)構(gòu)早期損傷從而采取有效措施,這對(duì)國(guó)民經(jīng)濟(jì)和安全均具有重要意義。本文首先在前人對(duì)功能梯度Timoshenko梁和高階剪切梁的有限元格式基礎(chǔ)上,推導(dǎo)出單元?jiǎng)偠染仃嚭唾|(zhì)量矩陣的顯式積分表達(dá)式,然后以功能梯度Timoshenko梁和高階剪切梁為研究對(duì)象引入直接代數(shù)法(單元模態(tài)應(yīng)變能法)和間接代數(shù)方法對(duì)梁結(jié)構(gòu)參數(shù)靈敏度進(jìn)行探討并進(jìn)一步分析不同邊界條件和噪音對(duì)靈敏度系數(shù)的影響。針對(duì)功能梯度Timoshenko梁和高階剪切梁,基于單元模態(tài)應(yīng)變能法推導(dǎo)出了損傷識(shí)別方程組,并引入Tikhonov正則化和遺傳算法對(duì)損傷方程組進(jìn)行求解,分析了損傷位置、損傷程度、梯度指數(shù)、邊界條件和噪音對(duì)識(shí)別結(jié)果的影響。數(shù)值算例表明,該方法能較有效地識(shí)別出功能梯度Timoshenko梁和高階梁的損傷位置和損傷程度,功能梯度高階梁在邊界處較難識(shí)別;不同邊界條件下,兩端固定梁的識(shí)別效果最好,懸臂梁在邊界處較難識(shí)別;在噪音條件下,兩種梁的偏差系數(shù)均較小,說(shuō)明該方法具有一定抗噪音能力。針對(duì)工程實(shí)際中的不確定性因素,引入概率統(tǒng)計(jì)識(shí)別理論進(jìn)行損傷識(shí)別。考慮模型誤差和測(cè)量誤差存在,在一定置信水平內(nèi)通過(guò)損傷前后單元概率密度變化識(shí)別出結(jié)構(gòu)損傷。概率統(tǒng)計(jì)損傷識(shí)別方程組同樣屬于反問(wèn)題,分別采用L曲線方法和奇異值截?cái)喾ㄟM(jìn)行求解并對(duì)進(jìn)行對(duì)比。分析了不同損傷程度、損傷位置、梯度指數(shù)以及邊界條件和噪音對(duì)識(shí)別結(jié)果的影響。數(shù)值算例結(jié)果表明:L曲線法比奇異值截?cái)喾椒ㄐЧ?奇異值截?cái)喾椒▽?duì)這兩種梁容易出現(xiàn)非損傷單元的干擾,易發(fā)生誤判和漏判。概率統(tǒng)計(jì)識(shí)別方法對(duì)于不確定性分析效果較好,損傷程度越大識(shí)別效果越好,并具有一定的抗噪音能力。
[Abstract]:As a new material with unique and excellent properties, functionally graded materials (FGM) vary from different material components to gradient nonuniform and continuous in a certain direction of space macroscopically. The macroscopical properties of its materials also show continuous changes. Functionally graded materials are used in aerospace, civil engineering, energy, sensors, Many fields, such as optoelectronics, have been further developed and applied. In the course of service, the active structure and functionally graded material structure have been damaged by external conditions, and the reliability has been reduced, and even accidents have occurred. Therefore, it is necessary to assess the health status of the structure in time, identify the early damage of the structure and take effective measures. This is of great significance to national economy and safety. In this paper, the explicit integral expressions of element stiffness matrix and mass matrix are derived based on the finite element schemes of functionally gradient Timoshenko beams and high-order shear beams. Then direct algebraic method (element mode strain energy method) and indirect algebraic method are introduced to study the sensitivity of structural parameters of functionally graded Timoshenko beam and high order shear beam. Effect of noise on sensitivity coefficient. For functionally graded Timoshenko beams and high-order shear beams, Based on the strain energy method of element mode, the damage identification equations are derived, and Tikhonov regularization and genetic algorithm are introduced to solve the damage equations. The damage location, damage degree and gradient exponent are analyzed. Numerical examples show that the proposed method can effectively identify the damage location and damage degree of functionally graded Timoshenko beams and higher-order beams, and it is difficult to identify functionally graded high-order beams at the boundary. Under different boundary conditions, the identification effect of the fixed beam at both ends is the best, the cantilever beam is difficult to identify at the boundary, and the deviation coefficient of the two beams is smaller under the noise condition. It is shown that the method has certain anti-noise ability. In view of the uncertain factors in engineering practice, the probabilistic and statistical identification theory is introduced to identify the damage, considering the existence of model error and measurement error. In a certain confidence level, structural damage is identified by the change of unit probability density before and after damage. The system of probabilistic statistical damage identification is also an inverse problem. The L-curve method and singular value truncation method are used to solve and compare the results. The effect of gradient exponent, boundary condition and noise on the recognition results. The numerical results show that the ratio L curve method is more effective than the singular value truncation method, and the singular value truncation method is prone to the interference of the two kinds of beams. The probability and statistics identification method is more effective for uncertainty analysis, the greater the degree of damage is, the better the recognition effect is, and it has a certain ability to resist noise.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB34
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾達(dá)峰;林哲;;采用新型假設(shè)剪切應(yīng)變插值函數(shù)的Timoshenko梁?jiǎn)卧猍J];艦船科學(xué)技術(shù);2015年S1期
2 萬(wàn)昶;曾瑤;張純;常力戈;;基于正則化遺傳算法的結(jié)構(gòu)損傷識(shí)別[J];南昌大學(xué)學(xué)報(bào)(工科版);2015年02期
3 孫紅躍;董峰;;基于神經(jīng)網(wǎng)絡(luò)的建筑結(jié)構(gòu)損傷識(shí)別方法[J];控制工程;2015年02期
4 李華東;梅志遠(yuǎn);朱錫;張穎軍;;梯形載荷作用下功能梯度簡(jiǎn)支梁彎曲的解析解[J];船舶力學(xué);2015年Z1期
5 Wei Chen;Wenguang Zhao;Huizhen Yang;Xuquan Chen;;DAMAGE DETECTION BASED ON OPTIMIZED INCOMPLETE MODE SHAPE AND FREQUENCY[J];Acta Mechanica Solida Sinica;2015年01期
6 朱檢;張婷婷;曾小婧;李雙龍;;基于柔度矩陣曲率差法識(shí)別結(jié)構(gòu)損傷[J];公路與汽運(yùn);2015年01期
7 張效忠;姚文娟;;基于敏感模態(tài)單元應(yīng)變能法結(jié)構(gòu)損傷識(shí)別[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年07期
8 張堅(jiān);張官兵;趙龍志;趙明娟;;梯度功能材料制備技術(shù)的現(xiàn)狀與展望[J];熱加工工藝;2013年04期
9 黃民水;吳s,
本文編號(hào):1607267
本文鏈接:http://www.sikaile.net/jingjilunwen/jiliangjingjilunwen/1607267.html