基于改進(jìn)NPE算法的間歇過程故障診斷研究
本文關(guān)鍵詞:基于改進(jìn)NPE算法的間歇過程故障診斷研究 出處:《蘭州理工大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 間歇過程 故障診斷 鄰域保持嵌入算法(NPE) SPA-MKNPE GNPE-LICA TGNPE TDNPE
【摘要】:隨著工業(yè)過程朝著智能化、大規(guī)模和集成化方向發(fā)展,生產(chǎn)過程變的越來越復(fù)雜。復(fù)雜系統(tǒng)容易受到外部環(huán)境的干擾和自身設(shè)備的老化而發(fā)生各種故障,要實(shí)現(xiàn)工業(yè)過程自動(dòng)化來提高生產(chǎn)效率,就要求控制系統(tǒng)處于穩(wěn)定狀態(tài),需要對(duì)生產(chǎn)過程進(jìn)行實(shí)時(shí)監(jiān)控。間歇生產(chǎn)方式由于自身的優(yōu)點(diǎn)在實(shí)際應(yīng)用中越來越廣,間歇過程的產(chǎn)品是批次輸出,一旦生產(chǎn)過程的某個(gè)時(shí)刻或某個(gè)變量發(fā)生故障,而得不到及時(shí)解決,都會(huì)使整個(gè)批次產(chǎn)品達(dá)不到要求,從而帶來巨大的經(jīng)濟(jì)損失,因此間歇過程的過程監(jiān)控和故障診斷就更為重要。對(duì)于復(fù)雜的間歇過程,我們很難獲得準(zhǔn)確的過程模型,基于數(shù)據(jù)驅(qū)動(dòng)的多元統(tǒng)計(jì)方法,不需要得到過程的精確模型,只需過程的歷史和在線數(shù)據(jù)就能實(shí)現(xiàn)對(duì)過程的監(jiān)控和故障診斷,隨著傳感器技術(shù)的發(fā)展和廣泛應(yīng)用于工業(yè)過程,過程的歷史和時(shí)時(shí)數(shù)據(jù)的獲取變得相對(duì)容易,為基于數(shù)據(jù)驅(qū)動(dòng)的故障診斷的廣泛應(yīng)用提供可能。如何在海量的過程數(shù)據(jù)中充分提取對(duì)過程監(jiān)控有用的特征信息是過程監(jiān)控與故障診斷的關(guān)鍵,相比與主元分析(PCA)算法只關(guān)注過程的全局特征信息,鄰域保持嵌入(NPE)算法從數(shù)據(jù)的局部特征信息出發(fā)來挖過出更多的間歇過程的細(xì)節(jié)特征信息。本文主要針對(duì)間歇生產(chǎn)過程在監(jiān)控和故障診斷過程中存在的問題,對(duì)鄰域保持嵌入算法(NPE)進(jìn)行了改進(jìn),其主要的研究?jī)?nèi)容如下:1.針對(duì)間歇過程的強(qiáng)非線性,傳統(tǒng)方法只是對(duì)數(shù)據(jù)的協(xié)方差矩陣進(jìn)行分解,忽略數(shù)據(jù)高階統(tǒng)計(jì)量信息,導(dǎo)致無(wú)法充分提取非線性過程的有效信息造成診斷效果不佳的問題,結(jié)合核算法和高維統(tǒng)計(jì)量信息提出了一種基于統(tǒng)計(jì)量的多向核鄰域保持嵌入(SPA-MKNPE)算法。該算法首先引入統(tǒng)計(jì)量模式分析(SPA)方法將樣本數(shù)據(jù)投影到統(tǒng)計(jì)量樣本空間中,可以更充分地提取非線性數(shù)據(jù)的高階統(tǒng)計(jì)量信息;然后在統(tǒng)計(jì)量空間中通過核函數(shù)將統(tǒng)計(jì)量樣本映射到高維核空間,用以解決數(shù)據(jù)的非線性;最后在高維核空間中應(yīng)用鄰域保持嵌入算法充分提取數(shù)據(jù)的局部結(jié)構(gòu)來對(duì)間歇過程進(jìn)行監(jiān)控,檢測(cè)到過程故障后用變量貢獻(xiàn)圖法來診斷出故障變量。通過青霉素發(fā)酵過程來驗(yàn)證SPA-MKNPE算法對(duì)強(qiáng)非線性的間歇過程故障診斷的有效性。2.針對(duì)間歇生產(chǎn)過程數(shù)據(jù)很難滿足單一的高斯分布,通常既包含高斯成分又包含非高斯成分的混合多分布,傳統(tǒng)方法在特征提取時(shí)不能兼顧數(shù)據(jù)的全局和局部特征的問題,提出了MGNPE-LICA的故障診斷算法。首先用D檢驗(yàn)法將原始數(shù)據(jù)分成高斯空間和非高斯空間,對(duì)于高斯空間用MGNPE算法在充分提取數(shù)據(jù)的局部結(jié)構(gòu)特征時(shí)兼顧數(shù)據(jù)的全局特征;對(duì)于非高斯空間用MLICA算法在解決非高斯問題的同時(shí)更好地保持?jǐn)?shù)據(jù)的全局和局部信息。再將兩個(gè)空間的監(jiān)控指標(biāo)合成一個(gè)聯(lián)合監(jiān)控指標(biāo)對(duì)過程進(jìn)行監(jiān)控。通過青霉素發(fā)酵過程驗(yàn)證了MGNPE-LICA算法的在解決間歇過程數(shù)據(jù)多分布的有效性。3.針對(duì)間歇過程的三維數(shù)據(jù)在展開成二維的過程中必然會(huì)導(dǎo)致數(shù)據(jù)內(nèi)在結(jié)構(gòu)破壞和全局與局部特征信息在提取過程中無(wú)法兼顧的問題,提出了張量全局-局部鄰域保持嵌入算法(TGNPE),首先用張量分解的方法直接對(duì)三維數(shù)據(jù)進(jìn)行建模,而不對(duì)數(shù)據(jù)進(jìn)行展開,有效地保存了數(shù)據(jù)的內(nèi)部結(jié)構(gòu),再用鄰域保持嵌入算法充分提取數(shù)據(jù)局部結(jié)構(gòu)信息的同時(shí)兼顧數(shù)據(jù)的全局信息,實(shí)現(xiàn)對(duì)數(shù)據(jù)特征信息更加充分地提取,TGNPE算法檢測(cè)到故障后用貢獻(xiàn)圖法診斷出故障變量。通過青霉素發(fā)酵過程驗(yàn)證了TGNPE算法更利于間歇過程數(shù)據(jù)信息的提取,診斷精度更高。4.針對(duì)間歇過程在時(shí)序和空間上的動(dòng)態(tài)特性,提出了基于張量分解的動(dòng)態(tài)鄰域保持嵌入算法(TDNPE)。首先用張量分解的方法把間歇過程數(shù)據(jù)看成二階張量,在張量空間對(duì)數(shù)據(jù)建模避免數(shù)據(jù)展開的向量化過程,導(dǎo)致數(shù)據(jù)內(nèi)部結(jié)構(gòu)被破壞;然后用動(dòng)態(tài)鄰域保持嵌入算法在張量空間提取過程特征信息,同時(shí)考慮空間和時(shí)序上的局部特征,有效解決了過程的動(dòng)態(tài)特性。通過青霉素發(fā)酵過程的仿真實(shí)驗(yàn)驗(yàn)證了TDNPE算法的有效性。
[Abstract]:With the development of industrial process toward intelligent, large-scale and integrated development, the production process becomes more and more complex. The complex system is vulnerable to the interference of the external environment and their own aging equipment and all kinds of faults, to realize the automation of industrial process to improve production efficiency, requires the control system is stable, the need for real-time monitoring of the the production process of batch process. Because of its advantages of more and more widely in practical applications, batch process products are batch output, once a time of the production process or a variable fault, but it is not solved in time, will make the whole batch of products meet the requirements, so as to bring huge economic losses therefore, process monitoring and fault diagnosis of batch process is more important. For the batch process is complicated, it is difficult to obtain accurate process model, based on data driven Multivariate statistical methods, does not need the precise model of the process, only the history and online data can be achieved on the process monitoring and fault diagnosis, along with the development of sensor technology and widely used in the industrial process, the process of acquiring data and history always become easy, may provide for the wide application of data driven fault diagnosis based on the data in the process. How to fully extract the feature information useful for monitoring process is the key process monitoring and fault diagnosis, compared with principal component analysis (PCA) algorithms only focus on the global features of the process of information, neighborhood preserving embedding (NPE) algorithm from the local feature information of data dig out minutiae information for batch process more. This article mainly aims at the existing in the batch process monitoring and fault diagnosis problems in the process of neighborhood preserving embedding algorithm (NPE) Has been improved, and its main research contents are as follows: 1. for strong nonlinear batch process, the traditional approach is to decompose the covariance matrix of the data, ignoring the data information of high order statistics, to fully extract effective information of nonlinear process caused by the problem of poor diagnostic effect, combined with the accounting method and the high dimensional statistics information is proposed a multi kernel neighborhood preserving embedding (SPA-MKNPE) algorithm based on statistics. Firstly, statistic pattern analysis (SPA) method of sample data will be projected to the statistics in the sample space, you can more fully extract the information of high order statistics and nonlinear data; statistics in space by kernel function will be mapped into high statistics dimensional kernel space is used to solve the nonlinear data; finally the application of neighborhood in the high dimensional kernel space is fully extracted according to local node number preserving embedding algorithm Structure to monitor batch process, detect process after fault by using variable contribution plot method to diagnose the fault variables. Through the penicillin fermentation process to validate the SPA-MKNPE algorithm for nonlinear batch process fault diagnosis of the effectiveness of.2. for batch process data is very difficult with single foot Gauss distribution, mixing usually includes Gauss component it contains non Gauss component distribution, traditional methods can not take into account the data of global and local features in feature extraction, we propose a fault diagnosis algorithm of MGNPE-LICA. Firstly, D test was used for the original data into Gauss space and Gauss space, the Gauss space MGNPE algorithm is used to extract the local structure in full feature data when considering the global features of the data; for non Gauss space with MLICA algorithm in solving the problem of non Gauss and better maintain the global and local data The Ministry of information. Then the two space monitoring index of the synthesis of a joint monitoring indicators to monitor the process of penicillin fermentation process. Through the validation of the MGNPE-LICA algorithm in solving the distributed batch process data the validity of.3. for 3D data of batch process in the process of two-dimensional in internal structure will inevitably lead to destruction and global data with the local feature information cannot be taken into account in the process of extraction problem, we propose a tensor global local neighborhood preserving embedding algorithm (TGNPE). The method first uses tensor decomposition model directly on 3D data, data without expansion, effectively preserve the internal structure of the data, and then the neighborhood preserving embedding algorithm fully extracted data locally the structure information of both global information data and realize more fully to extract the data feature information, TGNPE algorithm to detect faults after use The contribution of graph fault diagnosis variable. Through the penicillin fermentation process to verify the TGNPE extraction method is more conducive to the data information of batch process, higher diagnostic accuracy of.4. for dynamic characteristics of the batch process in time and space, and proposes a dynamic neighborhood tensor decomposition keep embedding (TDNPE) algorithm based on tensor decomposition method first uses. The batch process data as two order tensor in the tensor space data to the quantification process of data modeling to avoid, the internal structure of the data is destroyed; and then use dynamic neighborhood preserving embedding algorithm in tensor Space Extraction of feature information, and the local feature space and time, effectively solves the dynamic characteristics of the process. Through the simulation experiment of penicillin fermentation process to verify the effectiveness of the TDNPE algorithm.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP277
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王麗;侍洪波;;基于核獨(dú)立元分析的間歇過程在線監(jiān)控[J];化工學(xué)報(bào);2010年05期
2 齊詠生;王普;高學(xué)金;陳修哲;;一種新的多階段間歇過程在線監(jiān)控策略[J];儀器儀表學(xué)報(bào);2011年06期
3 賈立;程大帥;曹魯明;邱銘森;;基于數(shù)據(jù)的間歇過程時(shí)變神經(jīng)模糊模型研究[J];計(jì)算機(jī)與應(yīng)用化學(xué);2011年07期
4 史洪巖;苑明哲;王天然;袁德成;;間歇過程動(dòng)態(tài)優(yōu)化方法綜述[J];信息與控制;2012年01期
5 宋建成;;探討化工間歇過程的控制策略[J];化工自動(dòng)化及儀表;1990年01期
6 章寅源;;探討間歇過程控制的設(shè)計(jì)描述方法[J];煉油化工自動(dòng)化;1993年04期
7 趙春暉;王福利;姚遠(yuǎn);高福榮;;基于時(shí)段的間歇過程統(tǒng)計(jì)建模、在線監(jiān)測(cè)及質(zhì)量預(yù)報(bào)[J];自動(dòng)化學(xué)報(bào);2010年03期
8 李春富;鄭松;葛銘;;基于遞推非線性部分最小二乘模型的間歇過程批到批優(yōu)化[J];計(jì)算機(jī)與應(yīng)用化學(xué);2011年07期
9 張子羿;胡益;侍洪波;;一種基于聚類方法的多階段間歇過程監(jiān)控方法[J];化工學(xué)報(bào);2013年12期
10 郭明,謝磊,王樹青;基于模型的多尺度間歇過程性能監(jiān)控[J];系統(tǒng)工程理論與實(shí)踐;2004年01期
相關(guān)會(huì)議論文 前7條
1 趙春暉;王福利;賈明興;;一種改進(jìn)的聚類算法在間歇過程中的應(yīng)用[A];2006中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];2006年
2 劉興紅;鄒志云;劉建友;劉景全;王志甄;;間歇過程的多變量統(tǒng)計(jì)性能監(jiān)控技術(shù)綜述[A];2009中國(guó)過程系統(tǒng)工程年會(huì)暨中國(guó)mes年會(huì)論文集[C];2009年
3 胡益;馬賀賀;侍洪波;;基于局部模型的KPLS方法及其在間歇過程故障檢測(cè)中的應(yīng)用[A];第25屆中國(guó)控制與決策會(huì)議論文集[C];2013年
4 郭小萍;王福利;賈明興;;基于sub-MPLS的多階段間歇過程質(zhì)量預(yù)測(cè)與控制[A];第十七屆全國(guó)過路控制會(huì)議論文集[C];2006年
5 郭小萍;趙文丹;李元;;基于子時(shí)段LS-SVM的間歇過程質(zhì)量預(yù)測(cè)[A];2009中國(guó)控制與決策會(huì)議論文集(3)[C];2009年
6 王妍;李宏光;;青霉素發(fā)酵間歇過程的特征狀態(tài)監(jiān)督[A];2011年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第一分冊(cè))[C];2011年
7 郭小萍;王福利;賈明興;;基于滑動(dòng)窗PCA的諾西肽發(fā)酵過程子時(shí)段劃分和在線監(jiān)測(cè)[A];第二十四屆中國(guó)控制會(huì)議論文集(下冊(cè))[C];2005年
相關(guān)博士學(xué)位論文 前7條
1 謝磊;間歇過程統(tǒng)計(jì)性能監(jiān)控研究[D];浙江大學(xué);2005年
2 杜紅彬;間歇過程時(shí)頻域建模及其模型預(yù)測(cè)控制研究[D];大連理工大學(xué);2002年
3 趙春暉;多時(shí)段間歇過程統(tǒng)計(jì)建模、在線監(jiān)測(cè)及質(zhì)量預(yù)報(bào)[D];東北大學(xué);2009年
4 劉毅;間歇過程的核學(xué)習(xí)自適應(yīng)建模與控制研究及工業(yè)應(yīng)用[D];浙江大學(xué);2009年
5 王姝;基于數(shù)據(jù)的間歇過程故障診斷及預(yù)測(cè)方法研究[D];東北大學(xué);2010年
6 胡益;基于KPLS的工業(yè)過程監(jiān)測(cè)方法研究[D];華東理工大學(xué);2014年
7 李贛平;基于智能計(jì)算的過程控制與優(yōu)化若干研究[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 項(xiàng)亞南;基于MPCA的工業(yè)間歇過程故障檢測(cè)方法改進(jìn)研究[D];江南大學(xué);2015年
2 陳川;基于近鄰規(guī)則的間歇過程故障檢測(cè)算法研究[D];電子科技大學(xué);2015年
3 陳子鋒;面向具有不確定因素的間歇過程迭代學(xué)習(xí)控制[D];北京化工大學(xué);2015年
4 劉莉;基于核Fisher包絡(luò)分析的間歇過程故障診斷[D];北京化工大學(xué);2015年
5 李和平;基于核函數(shù)的間歇過程軟分段建模方法研究[D];北京化工大學(xué);2015年
6 崔寧;基于多階段MICA的間歇過程故障監(jiān)測(cè)[D];北京工業(yè)大學(xué);2015年
7 張亞潮;基于多尺度MICA的間歇過程故障監(jiān)測(cè)與診斷[D];北京工業(yè)大學(xué);2015年
8 武建;帶修正項(xiàng)的間歇過程迭代優(yōu)化控制方法及改進(jìn)研究[D];東北大學(xué);2014年
9 王海燕;基于單批次時(shí)段劃分的間歇過程故障監(jiān)測(cè)方法研究[D];東北大學(xué);2014年
10 張冰冰;基于數(shù)據(jù)的間歇過程指標(biāo)控制方法研究[D];東北大學(xué);2014年
,本文編號(hào):1396833
本文鏈接:http://www.sikaile.net/jingjilunwen/jiliangjingjilunwen/1396833.html