外包鋼加固鋼筋混凝土柱的非線性分析
[Abstract]:Because of its advantages such as small on-site workload, small influence on building space and short construction cycle, the steel-coated steel reinforcement method has been widely used in the reinforcement industry, and has been used to strengthen reinforced concrete structures and so on. Especially for the reinforcement of reinforced concrete members, the bearing capacity and stiffness of the members can be obviously improved. Therefore, it is a practical and valuable academic subject to study the nonlinearity of reinforced concrete columns strengthened with steel. A large number of experimental studies have been carried out on reinforced concrete columns strengthened with steel, and some important conclusions have been drawn. In view of the previous research, the unloading of reinforced concrete columns with stress history before reinforcement is carried out, and the influence of the amount of unloading on the performance of reinforced concrete columns after secondary loading is studied in this paper. By using the finite element software ABAQUS, the plastic damage constitutive model of concrete and the linear reinforced elastoplastic constitutive model of steel bar and coated steel are adopted according to the relevant regulations of Code for Design of concrete structures and Code for Design of reinforced concrete structures. Six models of steel-clad reinforced concrete columns with different unloading capacity were established, and the nonlinear analysis was carried out under axial loading and eccentric loading respectively, and the bearing capacity of the components was studied by studying how much the unloading capacity was to the members, and then analyzed the load-bearing capacity of the concrete columns under axial loading and eccentric loading respectively. The effect of ductility and utilization ratio of coated steel. At the same time, five finite element models are set up to analyze the influence of the thickness and strength of coated steel, the spacing of affixed plates, the cross-section size of angle steel and affixed plates, and the stress history on the strengthening performance of reinforced concrete columns. Through the finite element analysis, the following conclusions are drawn: for reinforced concrete columns subjected to axial compression, the maximum increase in bearing capacity is about 60% or so when strengthened, and the ductility of reinforced columns is the best. Under different stress level indexes, the smaller the stress level index, the higher the bearing capacity of reinforced columns and the higher the utilization ratio of outer steel, with the increase of the thickness of coated steel, and for the columns strengthened by eccentric compression, the loading capacity is the best when the load is unloaded about 40%. It is found that the smaller the spaced plate spacing is, the higher the bearing capacity is, but the increase in bearing capacity is not linear. Through finite element analysis, it is found that when the spacing is between 250mm~300mm, the bearing capacity increase is the largest and the strengthening effect is the best. It is found that the reinforcement effect is more obvious when the length of the angle steel is increased than the width of the plywood, and the bearing capacity of the reinforced column can be increased by 34.11% at the maximum, by changing the cross-section size of the angle steel and the section size of the patch plate. The formula of ultimate bearing capacity of reinforced concrete columns and the formula of outer steel utilization coefficient are used to calculate the model, and the numerical simulation value and theoretical calculation value are compared and analyzed by using the Code of Design for reinforcement of concrete structures and the formula of ultimate bearing capacity of concrete columns strengthened by external steel and the formula of outer steel utilization coefficient. It is found that the simulation value is within the scope of the code, indicating that the model meets the requirements, and that the research content of this paper can provide theoretical basis and reference value for engineering examples.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU375.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李敬業(yè);陳麗華;顧亞林;;外包鋼混凝土梁的應(yīng)用及施工技術(shù)[J];石油施工技術(shù);1983年05期
2 劉勻,張林緒,姜維山,林冰;外包鋼新材料灌漿加固鋼筋混凝土柱的研究與實(shí)踐[J];西安建筑科技大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年04期
3 吳波;計(jì)明明;;薄壁U形外包鋼再生混合梁受彎性能試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2014年04期
4 李九紅,惠靜薇,簡政,朱軼韻;濕式外包鋼加固柱極限承載力的研究[J];西安理工大學(xué)學(xué)報(bào);2001年03期
5 ;軸力和彎矩共同作用下外包鋼混凝土柱的試驗(yàn)研究[J];鋼結(jié)構(gòu);2011年05期
6 張圣賢 ,包韻芳 ,范良干 ,楊繼卓;除氧煤倉間外包鋼混凝土框架設(shè)計(jì)[J];工業(yè)建筑;1986年01期
7 郭建湘,劉細(xì)林;外包鋼混凝土構(gòu)件的剪切強(qiáng)度分析[J];廣州建筑;2005年01期
8 梁啟雄;;外包鋼混凝土構(gòu)件的剪切強(qiáng)度分析[J];茂名學(xué)院學(xué)報(bào);2009年04期
9 袁亞萍;;外包鋼加固鋼砼構(gòu)件的動(dòng)力性能研究[J];才智;2011年26期
10 范良干;;外包鋼混凝土骨架電阻焊機(jī)研制成功[J];電力建設(shè);1987年01期
相關(guān)會(huì)議論文 前10條
1 梁力;張道明;王偉;李明;;新型外包鋼組合梁承載力數(shù)值仿真的實(shí)現(xiàn)[A];第16屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅱ冊(cè))[C];2007年
2 徐德新;劉小明;段成曉;;外包鋼結(jié)構(gòu)在工程結(jié)構(gòu)加固中的應(yīng)用[A];中國鋼協(xié)鋼-混凝土組合結(jié)構(gòu)協(xié)會(huì)第八次年會(huì)論文集[C];2001年
3 王學(xué)東;朱聘儒;吳振聲;國明超;劉學(xué)東;;外包鋼組合節(jié)點(diǎn)抗震性能初探[A];中國鋼協(xié)鋼-混凝土組合結(jié)構(gòu)協(xié)會(huì)第三次年會(huì)論文集[C];1991年
4 滕智華;賀采旭;;外包鋼混凝土梁受剪強(qiáng)度試驗(yàn)研究[A];中國鋼協(xié)鋼-混凝土組合結(jié)構(gòu)協(xié)會(huì)第三次年會(huì)論文集[C];1991年
5 張道明;梁力;郭學(xué)東;;預(yù)應(yīng)力外包鋼組合梁彎曲延性的研究[A];第17屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅱ冊(cè))[C];2008年
6 姜紹飛;劉之洋;;基于神經(jīng)網(wǎng)絡(luò)的外包鋼混凝土受彎構(gòu)件的研究[A];第五屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第二卷)[C];1996年
7 朱軼韻;楊菊生;;外包鋼加固構(gòu)件的承載力及破壞狀態(tài)探討[A];第六屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第一卷)[C];1997年
8 杜德潤;李愛群;石啟印;陳麗華;婁宇;李培彬;;外包鋼-混凝土組合梁正截面抗彎承載力計(jì)算[A];第14屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第二冊(cè))[C];2005年
9 姜紹飛;劉之洋;;外包鋼混凝土組合梁的抗裂性能研究[A];中國鋼協(xié)鋼-混凝土組合結(jié)構(gòu)協(xié)會(huì)第六次年會(huì)論文集(下冊(cè))[C];1997年
10 劉闖;王連廣;呂月;;預(yù)應(yīng)力外包鋼混凝土T型梁抗彎承載力計(jì)算公式[A];中國鋼協(xié)鋼-混凝土組合結(jié)構(gòu)分會(huì)第十一次年會(huì)論文集[C];2007年
相關(guān)碩士學(xué)位論文 前10條
1 李業(yè)駿;新型外包鋼混凝土組合梁延性性能研究[D];江蘇大學(xué);2016年
2 趙磊;外包鋼加固鋼筋混凝土柱的非線性分析[D];蘭州理工大學(xué);2015年
3 陳軒;外包鋼加固鋼筋混凝土梁承載能力研究[D];浙江大學(xué);2015年
4 趙海鳳;濕式外包鋼柱軸心受壓承載力計(jì)算及其可靠度分析[D];武漢大學(xué);2005年
5 范濤;外包鋼加固鋼筋混凝土構(gòu)件的計(jì)算及有限元分析[D];西南交通大學(xué);2006年
6 楊朋君;濕式外包鋼加固混凝土軸心受壓柱的應(yīng)用研究[D];哈爾濱工程大學(xué);2011年
7 霍麗南;外包鋼混凝土現(xiàn)澆框架邊節(jié)點(diǎn)抗震性能試驗(yàn)研究[D];西安建筑科技大學(xué);2004年
8 范平平;外包鋼加固鋼筋混凝土構(gòu)件的動(dòng)力性能研究[D];西安科技大學(xué);2008年
9 李育君;局部外包鋼管裝配柱的抗震性能分析及接頭承載力計(jì)算[D];西安建筑科技大學(xué);2013年
10 徐良進(jìn);外包鋼加固鋼筋混凝土梁的抗火性能分析[D];蘇州科技學(xué)院;2014年
,本文編號(hào):2458475
本文鏈接:http://www.sikaile.net/jingjilunwen/jianzhujingjilunwen/2458475.html