天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

受腐蝕鋼筋混凝土墩柱抗側(cè)向沖擊性能研究

發(fā)布時(shí)間:2018-08-15 14:04
【摘要】:隨著我國(guó)交通基礎(chǔ)建設(shè)的飛速發(fā)展,全國(guó)各地興建或規(guī)劃建設(shè)大量?jī)?nèi)河和跨海橋梁。對(duì)于大型橋梁,車輛、船舶或海上漂浮物撞擊橋墩的事故時(shí)有發(fā)生。同時(shí),處于海洋環(huán)境中的跨海大橋橋墩受到氯離子的侵蝕導(dǎo)致混凝土構(gòu)件中的鋼筋腐蝕,耐久性退化而提前失效,其規(guī)律有待深入研究。因而研究受腐蝕鋼筋混凝土墩柱的抗側(cè)向沖擊性能具有重要的工程意義和學(xué)術(shù)價(jià)值。本文通過快速腐蝕和落錘沖擊試驗(yàn)完成8根不同腐蝕率的鋼筋混凝土墩柱的抗側(cè)向沖擊性能的試驗(yàn)研究;通過考慮混凝土墩柱的材料率效應(yīng),鋼筋腐蝕力學(xué)性能退化,鋼筋混凝土腐蝕粘結(jié)性能退化以及沖擊侵徹性能,分析得到腐蝕鋼筋混凝土墩柱的極限狀態(tài)計(jì)算方法;利用ANSYS/LS-DYNA對(duì)試驗(yàn)進(jìn)行數(shù)值模擬,通過鋼筋力學(xué)性能的退化模擬鋼筋腐蝕作用,綜合分析獲得腐蝕率對(duì)鋼混墩柱抗側(cè)向沖擊性能的影響。在此基礎(chǔ)上進(jìn)行拓展,分析支座形式以及混凝土強(qiáng)度對(duì)其抗側(cè)沖擊性能的影響。得到以下主要結(jié)論:(1)隨著腐蝕率的增加,鋼筋混凝土墩柱的初始銹脹裂縫寬度和長(zhǎng)度增加明顯。(2)不同腐蝕率試件在沖擊荷載作用下呈現(xiàn)不同破壞形態(tài)。低腐蝕率試件的破壞模式為沖擊處混凝土侵徹壓碎并由彎剪裂縫開展導(dǎo)致彎剪破壞,高腐蝕率試件破壞模式為沖擊處混凝土侵徹壓碎以及無(wú)預(yù)警的剪切脆性破壞。腐蝕率的增加降低墩柱抗側(cè)沖擊延性。(3)高腐蝕率的混凝土墩柱的平均沖擊力和峰值沖擊力在低沖擊工況下大于低腐蝕率墩柱,在破壞工況下,高腐蝕率墩柱的平均沖擊力和峰值沖擊力均小于低腐蝕率試件,腐蝕率影響試件的最終破壞模式,同時(shí)降低試件的沖擊承載力。(4)高腐蝕率試件的拉區(qū)鋼筋的峰值應(yīng)變和平均應(yīng)變較低腐蝕率試件出現(xiàn)明顯降低。主要原因是鋼筋的腐蝕導(dǎo)致鋼筋與混凝土的粘結(jié)性能退化,使鋼筋應(yīng)變滯后。使用鋼筋應(yīng)變滯后系數(shù)?考慮鋼筋腐蝕作用導(dǎo)致的應(yīng)變滯后,計(jì)算結(jié)果與試驗(yàn)結(jié)果接近,誤差在6.8%。(5)腐蝕鋼筋混凝土墩柱的沖擊極限狀態(tài)計(jì)算方法主要考慮材料的率效應(yīng),腐蝕鋼筋的力學(xué)性能退化,腐蝕鋼筋的應(yīng)變滯后,沖擊區(qū)域的混凝土侵徹退化。計(jì)算結(jié)果與試驗(yàn)結(jié)果誤差在5.27%。(6)有限元分析中,觀察試件的沖擊主拉應(yīng)力分布可以發(fā)現(xiàn)兩端簡(jiǎn)支試件在沖擊部位兩側(cè)各1/3處為試件沖擊剪切破壞的薄弱部位;一端固支,一端簡(jiǎn)支的試件,主拉應(yīng)力集中區(qū)域偏向固支端,試件跨中沖擊區(qū)域靠近固支端側(cè)1/3跨處成為試件的薄弱部位。同時(shí)試件的墩帽角部為受壓薄弱部位。(7)高強(qiáng)度的混凝土峰值沖擊力大于低強(qiáng)度的混凝土。由于混凝土材料的率敏感性,在沖擊速度較低時(shí),混凝土的沖擊力漲幅較小,沖擊速度較高時(shí),混凝土的沖擊力漲幅明顯變大。
[Abstract]:With the rapid development of transportation infrastructure in China, a large number of inland rivers and cross-sea bridges are built or planned throughout the country. Accidents occur when large bridges, vehicles, ships or floating objects hit the pier. At the same time, the corrosion of bridge piers caused by chloride ions in the marine environment leads to the corrosion of steel bars in concrete members, the durability degradation and early failure, the law of which needs to be further studied. Therefore, it is of great engineering significance and academic value to study the lateral impact resistance of corroded reinforced concrete pier columns. In this paper, the lateral impact resistance of 8 reinforced concrete pier columns with different corrosion rates is studied by rapid corrosion test and drop hammer impact test, and the corrosion mechanical properties of reinforced concrete columns are degraded by considering the material rate effect of concrete pier columns. The ultimate state calculation method of corroded reinforced concrete pier column is obtained by analyzing the degradation of corrosion bond property and impact penetration property of reinforced concrete, and the numerical simulation of the test is carried out by ANSYS/LS-DYNA. The influence of corrosion rate on lateral impact resistance of steel concrete pier column is analyzed synthetically through the degradation of steel bar mechanical properties to simulate the corrosion of steel bar. On this basis, the influence of bearing form and concrete strength on lateral impact resistance is analyzed. The main conclusions are as follows: (1) with the increase of corrosion rate, the initial corrosion crack width and length of reinforced concrete pier columns increase obviously, and (2) the specimens with different corrosion rates show different failure patterns under impact loading. The failure mode of low corrosion rate specimens is concrete penetration and crushing at impact site and bending shear failure caused by bending shear crack. The failure mode of high corrosion rate specimen is concrete penetration crushing at impact site and shear brittle failure without warning. The increase of corrosion rate reduces the lateral impact ductility of the pier column. (3) the average impact force and peak impact force of the concrete pier column with high corrosion rate are larger than those of the low corrosion rate pier column under the low impact condition, and under the failure condition, The average impact force and peak impact force of the pier column with high corrosion rate are smaller than those of the low corrosion rate specimen, and the corrosion rate affects the ultimate failure mode of the specimen. (4) the peak strain and average strain of steel bar in tensile zone of high corrosion rate specimens are obviously lower than those of low corrosion rate specimens. The main reason is that the corrosion of steel bar leads to the degradation of bond property between steel bar and concrete, which makes the strain of steel bar lag behind. Using strain lag coefficient of steel bar? Considering the strain lag caused by the corrosion of steel bar, the calculation result is close to the test result, and the error is 6.8. (5) the impact limit state calculation method of corroded reinforced concrete pier column mainly considers the rate effect of material, and the mechanical properties of corroded steel bar degrade. The strain of corroded steel bar lags behind, and the penetration of concrete in impact area degenerates. The error between the calculated results and the test results is 5.27. (6) in the finite element analysis, observing the main tensile stress distribution of the specimens, it can be found that the specimens with simple supports at both ends are the weak parts of the impact shear failure at each third of each side of the impact site, and one end is clamped, For simply supported specimens with one end, the main tensile stress concentration area is inclined to the fixed support end, and the impact area in the middle span of the specimen is close to the end / side of the fixed support end to the third span, which becomes the weak part of the specimen. At the same time, the corner of the pier cap of the specimen is weak under compression. (7) the peak impact force of high strength concrete is greater than that of low strength concrete. Because of the rate sensitivity of concrete material, when the impact velocity is low, the increase of impact force of concrete is smaller, and the increase of impact force of concrete is obviously larger when the impact velocity is high.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU375

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 朱f^,弓俊青;一種被動(dòng)的雜交混凝土墩柱分析模型[J];華東交通大學(xué)學(xué)報(bào);2001年03期

2 韓鳳鳴;鋼筋混凝土墩柱頂部裂縫的預(yù)防[J];建筑;2004年07期

3 劉長(zhǎng)華;;混凝土墩臺(tái)的施工[J];黑龍江交通科技;2009年08期

4 孫治國(guó);王東升;郭迅;李曉莉;;鋼筋混凝土墩柱等效塑性鉸長(zhǎng)度研究[J];中國(guó)公路學(xué)報(bào);2011年05期

5 周念林;采用控爆拆除鋼筋混凝土墩的實(shí)例[J];探礦工程;1991年04期

6 周念林;;采用控爆拆除鋼筋混凝土墩的實(shí)例[J];西部探礦工程;1991年05期

7 盧世貴;于本領(lǐng);賈慶毅;;橋梁混凝土墩臺(tái)表面老化修復(fù)技術(shù)研究應(yīng)用[J];山東交通科技;2007年03期

8 鄭茂金;鄧江東;夏樟華;;外包粘鋼抗震加固鋼筋混凝土墩柱的研究進(jìn)展[J];福建建筑;2010年06期

9 李根濤;方從啟;;海洋環(huán)境下混凝土墩柱的耐久性模擬[J];混凝土;2013年07期

10 魏洋;吳剛;吳智深;蔣劍彪;;不同材料環(huán)向纏繞加固混凝土墩柱抗震性能比較研究[J];世界橋梁;2008年03期

相關(guān)會(huì)議論文 前2條

1 李裕春;劉強(qiáng);毛益明;沈蔚;范磊;;淺層水中沖擊波作用下混凝土墩的動(dòng)態(tài)響應(yīng)分析[A];第七屆全國(guó)工程結(jié)構(gòu)安全防護(hù)學(xué)術(shù)會(huì)議論文集[C];2009年

2 郭偉立;;廈門海滄港區(qū)12號(hào)泊位水上大體積現(xiàn)澆鋼筋混凝土墩臺(tái)施工[A];第十四屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(下冊(cè))[C];2009年

相關(guān)碩士學(xué)位論文 前6條

1 邱春杰;受腐蝕鋼筋混凝土墩柱抗側(cè)向沖擊性能研究[D];上海交通大學(xué);2015年

2 關(guān)洪成;高強(qiáng)鋼筋混凝土墩柱非線性有限元分析[D];北方工業(yè)大學(xué);2011年

3 田騰;預(yù)應(yīng)力碳纖維條帶加固圓形混凝土墩柱抗震性能研究[D];北京交通大學(xué);2012年

4 王旭;PBL加勁型薄壁鋼箱混凝土墩柱靜力性能有限元分析[D];長(zhǎng)安大學(xué);2014年

5 王紹斯;地震作用下鋼筋混凝土墩柱的抗剪強(qiáng)度研究[D];福州大學(xué);2010年

6 王燦;基于OpenSees的薄壁鋼箱混凝土墩柱抗震性能分析[D];長(zhǎng)安大學(xué);2014年

,

本文編號(hào):2184431

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jingjilunwen/jianzhujingjilunwen/2184431.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1c058***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com