岳陽某工程地源熱泵空調(diào)系統(tǒng)相關(guān)問題研究
本文選題:建筑節(jié)能 + 地源熱泵 ; 參考:《湖南大學》2015年碩士論文
【摘要】:隨著我國城市化進程的加快,每年新增建筑面積約18億~20億m2,預計到2020年底,我國新增建筑面積將達到300億m2。如此大規(guī)模的新增建筑,建筑能耗無疑也是巨大的。目前我國建筑業(yè)與工業(yè)、交通一起被列為重點節(jié)能行業(yè),并且建筑將超越工業(yè)、交通等其他行業(yè)居于社會能源消耗的首位,因此建筑節(jié)能也日益重要。而地源熱泵技術(shù)的應用對緩解建筑能耗具有重大意義。地源熱泵在我國已經(jīng)有一定的使用規(guī)模,但是在地源熱泵系統(tǒng)設計和運行過程中仍然存在一些問題值得設計人員注意。本文結(jié)合岳陽市宏潤家園的空調(diào)與衛(wèi)生熱水工程,對地源熱泵系統(tǒng)設計過程中的一些問題做以下研究:1.對于大型住宅建筑在負荷計算時,由于空調(diào)使用的不確定性大,有必要考慮同時使用系數(shù)。在埋管總長度的計算上,規(guī)范中理論計算得到的結(jié)果與通過土壤性測試后計算得到的結(jié)果有一定的誤差,因此對于大型的地源熱泵系統(tǒng)做土壤熱物性測試很有必要。就地源熱泵系統(tǒng)的埋管深度建立數(shù)學模型,得出在單位井深換熱量和地埋管側(cè)進出水溫差一定,埋管深度必須大于一定的數(shù)值時才能滿足規(guī)范規(guī)定的地埋管內(nèi)的最低流速要求。另外在廣大夏熱冬冷地區(qū),通常夏季的冷負荷遠大于冬季的熱負荷,為平衡土壤的冷熱量采用冷卻塔輔助散熱。對于本文負荷較大的建筑,在部分負荷及滿負荷狀態(tài)下就地源熱泵機組和冷卻塔的運行控制提出了一種高效可行的控制策略。2.在生活熱水系統(tǒng)的選擇上,設計了太陽能熱水與地源熱泵熱水相結(jié)合熱水供應方式。對于生活熱水熱泵機組與空調(diào)熱泵機組聯(lián)合運行時,夏季生活熱水機組從土壤中取熱,而空調(diào)機組則向土壤中釋熱。本文對這種復合式地源熱泵系統(tǒng)的夏季運行提出兩種運行策略,并分析了這兩種運行策略的可靠性。從而得出在這兩種運行策略下,系統(tǒng)的效率都有所提高。3.對目前太陽能系統(tǒng)中常用的分層蓄熱水箱進行介紹和分析。通過分析得出分層蓄熱水箱具有啟動快、加熱循環(huán)周期長、效率高等優(yōu)點。對于集中熱水供應系統(tǒng)的建筑建議采用分層蓄熱水箱,這將為建筑節(jié)省相當可觀的熱水能耗。
[Abstract]:With the acceleration of urbanization in our country, the new building area is about 1.8 billion ~ 2 billion m2 per year. It is estimated that by the end of 2020, the new building area will reach 30 billion m2. Such a large scale of new buildings, building energy consumption is undoubtedly huge. At present, the construction industry, industry and transportation in our country are listed as the key energy saving industries together, and the construction will surpass the industry, and the traffic and other industries will occupy the first place in the social energy consumption, so the building energy saving is becoming more and more important. The application of ground source heat pump technology is of great significance to alleviate building energy consumption. Ground-source heat pump (GSHP) has been used on a certain scale in China, but there are still some problems in the design and operation of GSHP system. In this paper, combined with the air conditioning and sanitary hot water engineering of Hongrun Home in Yueyang City, some problems in the design of ground-source heat pump system are studied as follows: 1. For large residential buildings, it is necessary to consider the coefficient of simultaneous use due to the uncertainty of the use of air conditioning in load calculation. In the calculation of the total length of buried pipe, the results obtained by the theoretical calculation in the code have some errors compared with the results obtained after the soil test. Therefore, it is necessary for the large-scale ground-source heat pump system to test the soil thermal properties. The mathematical model of buried pipe depth of local source heat pump system is established. It is concluded that when the heat exchange in the unit well depth and the temperature difference between the inlet and outlet water on the side of the buried pipe are constant, the buried pipe depth must be greater than a certain value to meet the minimum velocity requirement in the underground pipe specified in the code. In addition, in the hot summer and cold winter areas, the cooling load in summer is much larger than the heat load in winter, and cooling tower is used to balance the cooling heat of soil. An efficient and feasible control strategy of local source heat pump unit and cooling tower under partial load and full load condition is proposed for the buildings with large loads in this paper. In the choice of the domestic hot water system, the hot water supply mode of the combination of solar hot water and ground source heat pump hot water is designed. For the combined operation of domestic hot water heat pump unit and air conditioning heat pump unit, the domestic hot water unit takes heat from the soil in summer, while the air conditioning unit releases heat into the soil. This paper presents two operational strategies for the summer operation of this hybrid ground-source heat pump system and analyzes their reliability. Thus, under these two strategies, the efficiency of the system has been improved. 3. 3. This paper introduces and analyzes the stratified storage water tank commonly used in solar energy system. The results show that the stratified storage tank has the advantages of fast starting, long cycle and high efficiency. For the building of centralized hot water supply system, stratified water storage tank is recommended, which will save considerable energy consumption of hot water for the building.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TU83
【參考文獻】
相關(guān)期刊論文 前10條
1 高曉云;郭春梅;白瑩霜;;地埋管換熱器井群換熱特性的研究[J];建筑熱能通風空調(diào);2015年01期
2 王陽;于光磊;;建筑節(jié)能在我國的應用[J];建筑與預算;2014年10期
3 孔曉鳴;林建泉;王福寶;許敬德;汪揚帆;劉杰;;水源熱泵機組變工況特性的試驗研究[J];制冷技術(shù);2014年02期
4 武佳琛;張旭;周翔;劉海霞;;基于運行策略的某復合式地源熱泵系統(tǒng)運行優(yōu)化分析[J];制冷學報;2014年02期
5 張磊;馬宏權(quán);黃敏軒;羅磊;張志鵬;;太陽能—地源熱泵復合熱水系統(tǒng)的應用分析[J];供熱制冷;2012年08期
6 沈德安;;太陽能地源熱泵耦合系統(tǒng)工程運用分析[J];鐵道標準設計;2010年S2期
7 王冬青;顏亮;王灃浩;;不同開停比下地埋管換熱器運行特性研究[J];建筑科學;2010年08期
8 王雁生;王成勇;陳文明;胡映寧;林俊;;太陽能+地源熱泵并聯(lián)熱水系統(tǒng)冬季運行特性研究[J];暖通空調(diào);2009年09期
9 羅剛;彭三兵;付祥釗;;一種新型水箱溫度分層的相關(guān)特性研究[J];建設科技;2008年10期
10 劉文學;唐志偉;魏加項;張宏宇;馬重芳;;地源熱泵間歇制熱運行的試驗研究[J];可再生能源;2008年01期
相關(guān)碩士學位論文 前8條
1 陳海峰;高校學生生活熱水需求模式研究[D];湖南大學;2013年
2 邱昱榕;某辦公大樓地源熱泵空調(diào)系統(tǒng)優(yōu)化設計與運行研究[D];湖南大學;2012年
3 陳長武;土壤源熱泵衛(wèi)生熱水供應系統(tǒng)性能與成本分析[D];重慶大學;2012年
4 鄒勤;地源熱泵系統(tǒng)優(yōu)化設計研究及應用軟件研發(fā)[D];重慶大學;2011年
5 彭亮;地源熱泵系統(tǒng)特性研究與模擬程序開發(fā)[D];重慶大學;2008年
6 王明國;地源熱泵系統(tǒng)工程案例分析[D];重慶大學;2007年
7 王宇航;地源熱泵系統(tǒng)地下埋管換熱器的研究[D];湖南大學;2006年
8 張新宇;土壤源熱泵地下?lián)Q熱系統(tǒng)溫度場分析[D];北方工業(yè)大學;2005年
,本文編號:2108712
本文鏈接:http://www.sikaile.net/jingjilunwen/jianzhujingjilunwen/2108712.html