自保溫開槽砌塊灌孔砌體基本力學(xué)性能試驗(yàn)研究
本文選題:開槽砌塊 + 自保溫砌體; 參考:《湖南大學(xué)》2015年碩士論文
【摘要】:建筑節(jié)能與否,已經(jīng)直接關(guān)系到我國(guó)的能源供求現(xiàn)狀,并將影響氣候變化和可持續(xù)發(fā)展。自保溫配筋砌塊砌體體系是一種能夠使墻體實(shí)現(xiàn)自主隔熱保溫的結(jié)構(gòu)形式,它集受力與保溫于一體,真正實(shí)現(xiàn)了保溫與結(jié)構(gòu)的一體化,且能夠運(yùn)用在承重墻體內(nèi),有著很高的應(yīng)用價(jià)值與研究?jī)r(jià)值。在自保溫配筋砌塊砌體的實(shí)際工程中,為方便預(yù)留用于放置橫向鋼筋的水平通孔,工程中常采用肋部有開槽的混凝土砌塊,砌筑墻體時(shí),將砌塊開槽肋敲掉便可形成橫向通孔,但目前絕大部分的國(guó)內(nèi)外學(xué)者僅僅研究了未開槽砌塊砌體的各項(xiàng)基本力學(xué)性能。本文將針對(duì)開槽自保溫砌塊及普通開槽砌塊進(jìn)行試驗(yàn)與理論研究,對(duì)開槽及保溫塊型可能對(duì)砌塊砌體的力學(xué)性能產(chǎn)生的影響進(jìn)行深入分析。根據(jù)5組共計(jì)15個(gè)自保溫開槽灌孔砌體的抗壓試驗(yàn)、5組30個(gè)灌孔自保溫砌塊砌體的抗剪試驗(yàn),深入研究了其抗壓力學(xué)性能、抗剪力學(xué)性能以及變形能力、破壞模式,并進(jìn)行了相關(guān)理論的分析。根據(jù)保溫層的加入,提出了兩種用于自保溫開槽砌塊灌孔砌體的抗壓強(qiáng)度的計(jì)算分析模型,一種是不考慮保溫層的力學(xué)效應(yīng),將其視為普通砌體考慮,第二種則是將保溫砌塊的整個(gè)截面作為受力面考慮。第2種計(jì)算模型的計(jì)算結(jié)果與實(shí)測(cè)結(jié)果更為相近。不過(guò)如若是為了精簡(jiǎn)計(jì)算過(guò)程和結(jié)構(gòu)安全性方面的考慮,則將自保溫開槽砌塊灌孔砌體簡(jiǎn)化為普通砌塊灌孔砌體也是一種可以采用的方法。嘗試推導(dǎo)了適用于自保溫開槽砌塊灌孔砌體的應(yīng)力應(yīng)變曲線計(jì)算式,其能夠一定程度上較好反映自保溫開槽砌塊灌孔砌體的本構(gòu)模型的規(guī)律。另本文根據(jù)實(shí)測(cè)數(shù)據(jù)衍算出的自保溫開槽灌孔砌體的本構(gòu)模型計(jì)算式和變形模量的計(jì)算式的實(shí)際計(jì)算值均能夠和實(shí)測(cè)值比較接近。因?yàn)樵诶呱洗嬖谥_槽,肋部的開槽處被撬掉以后,不同匹的砌塊內(nèi)部的灌孔芯柱可以達(dá)到互相聯(lián)結(jié)的效果,能夠?qū)崿F(xiàn)同時(shí)承受荷載的效果,所以自保溫開槽灌孔砌體的受剪性能會(huì)有一定程度上的增強(qiáng)。根據(jù)兩種分析模型建立了自保溫開槽砌塊的抗剪強(qiáng)度計(jì)算式,從計(jì)算結(jié)果與試驗(yàn)結(jié)果的對(duì)比可以看出,采用計(jì)算模型二的計(jì)算方法更為符合實(shí)際情況。但是,若以精簡(jiǎn)計(jì)算過(guò)程、并考慮安全儲(chǔ)備,則將體自保溫開槽砌塊灌孔砌看作普通砌體來(lái)進(jìn)行相關(guān)計(jì)算也是可以考慮的。采用abaqus有限元分析軟件建立了自保溫開槽砌塊灌孔砌體和普通開槽砌塊灌孔砌體的的分離式及整體式模型,分析了自保溫開槽砌塊灌孔砌體和普通開槽砌塊灌孔砌體的抗壓、抗剪過(guò)程,有限元的分析結(jié)果與試驗(yàn)值和規(guī)范值均比較接近。且按照本文推導(dǎo)的開槽砌塊灌孔砌體及自保溫開槽砌塊灌孔砌體的強(qiáng)度計(jì)算公式和變形性能分析的公式為基礎(chǔ),對(duì)開槽砌塊灌孔砌體及自保溫開槽砌塊灌孔砌體進(jìn)行有限元的整體式模型分析是具有可行性的。
[Abstract]:Building energy saving or not has a direct bearing on the current situation of energy supply and demand in China, and will affect climate change and sustainable development. The self-insulation reinforced block masonry system is a kind of structure form which can make the wall achieve self-insulation and insulation. It integrates the force and heat preservation, and realizes the integration of heat preservation and structure, and can be used in the load bearing wall. Has the very high application value and the research value. In the practical engineering of self-insulation reinforced block masonry, in order to make it convenient to reserve horizontal through hole for placing transverse steel bar, the concrete block with slots in ribs is often used in the project. When masonry wall is built, the slotted rib of the block can be knocked out and the transverse opening can be formed. However, most scholars at home and abroad have only studied the basic mechanical properties of unslotted block masonry. In this paper, the experimental and theoretical study on slotted self-insulating block and common slotted block is carried out, and the influence of slotted and insulated block type on the mechanical properties of block masonry is deeply analyzed. According to the compression tests of 15 self-insulating slotted grouting masonry in 5 groups and 30 self-insulating block masonry with irrigation holes in 5 groups, the compressive mechanical properties, shear mechanical properties, deformation ability and failure mode of the masonry are studied in depth. The related theories are analyzed. According to the addition of insulation layer, two calculation and analysis models of compressive strength of self-insulating and slotted block grouting masonry are proposed. One is that the mechanical effect of insulation layer is not considered and considered as ordinary masonry. The second is to take the whole section of the insulation block as the bearing surface. The calculated results of the second model are more similar to the measured results. However, if the purpose is to simplify the calculation process and structural safety, it is also a feasible method to simplify the self-insulating slotted block masonry to ordinary block grouted masonry. The formula of stress-strain curve suitable for self-insulating slotted block grouting masonry is derived, which can reflect the constitutive model of self-insulating slotted block grouting masonry to some extent. In addition, according to the measured data, the constitutive model and deformation modulus of the self-insulating slotted masonry can be calculated by the actual calculation value can be close to the measured value. Because there is a slot on the rib, after the slot in the rib is broken off, the core columns in the different blocks can be connected to each other and can bear the load at the same time. Therefore, the shear performance of self-insulation slotted and perforated masonry will be enhanced to a certain extent. According to two kinds of analysis models, the calculation formula of shear strength of self-insulating slotted block is established. From the comparison of calculation results and test results, it can be seen that the calculation method of calculation model two is more in line with the actual situation. However, if the calculation process is simplified and safety reserve is considered, it can also be considered that the self-heat preservation and slotted block grouting block is regarded as ordinary masonry to carry out the relevant calculation. The separate and integral models of self-insulating slotted block grouting masonry and common slotted block grouted masonry are established by using abaqus finite element analysis software, and the compression resistance of self-insulating slotted block grouted masonry and common slotted block grouted masonry is analyzed. The results of the finite element analysis are close to the experimental values and the standard values in the shear process. Based on the strength calculation formula and deformation analysis formula of slotted block grouting masonry and self-insulating slotted block masonry, which are derived in this paper, It is feasible to analyze the integral model of slotted block grouting masonry and self-insulating slotted block grouting masonry by finite element method.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU522.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 歐建生;陳久旺;;自保溫砌體存在的問(wèn)題及治理對(duì)策[J];住宅產(chǎn)業(yè);2013年11期
2 韋延年;于忠;余恒鵬;;應(yīng)以系統(tǒng)概念研發(fā)和應(yīng)用自保溫墻體材料[J];墻材革新與建筑節(jié)能;2008年03期
3 韋延年;于忠;余恒鵬;金潔;;應(yīng)以系統(tǒng)技術(shù)研究和應(yīng)用自保溫墻體材料[J];四川建筑科學(xué)研究;2009年03期
4 任民;;結(jié)構(gòu)自保溫技術(shù)體系推廣工作的探索與思考[J];建設(shè)科技;2010年07期
5 陳久旺;王海昌;;自保溫砌體存在的問(wèn)題及治理對(duì)策[J];建設(shè)科技;2013年02期
6 胡明福;;自保溫隔熱圍護(hù)結(jié)構(gòu)系統(tǒng)在四川的應(yīng)用[J];建設(shè)科技;2013年21期
7 ;《自保溫隔熱圍護(hù)結(jié)構(gòu)系統(tǒng)和新型墻體材料的開發(fā)研究與示范》成果及實(shí)施情況[J];墻材革新與建筑節(jié)能;2011年07期
8 陳榮華;;南通市兩種自保溫新墻材通過(guò)省級(jí)評(píng)估鑒定[J];江蘇建材;2008年04期
9 ;自保溫裝配式圍護(hù)結(jié)構(gòu)基板通過(guò)省級(jí)鑒定[J];墻材革新與建筑節(jié)能;2011年02期
10 楊博;車鐵軍;楊曉華;蘇君輝;楊益;;自保溫墻體材料在工程中的應(yīng)用研究[J];中華民居(下旬刊);2012年11期
相關(guān)會(huì)議論文 前7條
1 成建躍;;全輕混凝土自保溫陶粒砌塊性能介紹[A];輕骨料工業(yè)發(fā)展及工程應(yīng)用——第十一屆全國(guó)輕骨料及輕骨料混凝土學(xué)術(shù)討論會(huì)暨第五屆海峽兩岸輕骨料混凝土產(chǎn)制與應(yīng)用技術(shù)研討會(huì)論文集[C];2012年
2 張磊蕾;;我國(guó)自保溫混凝土砌塊的發(fā)展現(xiàn)狀及研究方向[A];自主創(chuàng)新與持續(xù)增長(zhǎng)第十一屆中國(guó)科協(xié)年會(huì)論文集(2)[C];2009年
3 張濤;劉政辰;;石膏自保溫外墻砌塊綜合優(yōu)勢(shì)分析[A];2010中國(guó)建筑材料聯(lián)合會(huì)石膏建材分會(huì)成立大會(huì)暨第五屆全國(guó)石膏技術(shù)交流大會(huì)及展覽會(huì)論文集[C];2010年
4 鄭敏;鄭勇;;磚渣自保溫夾心節(jié)能砌塊及應(yīng)用[A];房建材料與綠色建筑[C];2009年
5 姜晨光;;夏熱冬冷地區(qū)建筑自保溫墻體材料及墻體熱工性能指標(biāo)問(wèn)題研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
6 陳東;;加氣混凝土自保溫節(jié)能體系的研究與實(shí)踐[A];第三屆海峽兩岸土木建筑學(xué)術(shù)研討會(huì)論文集[C];2007年
7 梁嘉琪;;自保溫?zé)Y(jié)砌塊與單層干燥切碼運(yùn)系統(tǒng)的實(shí)踐[A];2012年第十五屆(南京)國(guó)際墻體屋面材料生產(chǎn)技術(shù)及裝備博覽會(huì)論文集[C];2012年
相關(guān)重要報(bào)紙文章 前5條
1 李鋼;淮安推廣應(yīng)用節(jié)能自保溫墻材[N];中國(guó)建材報(bào);2009年
2 鄧麗萍 劉春平;江蘇省淮安市節(jié)能自保溫新墻材產(chǎn)品通過(guò)省級(jí)評(píng)估[N];中國(guó)建材報(bào);2009年
3 余紀(jì)明 王保初;新型自保溫墻體材料在億源投產(chǎn)[N];臺(tái)州日?qǐng)?bào);2009年
4 記者 繆琴;建筑節(jié)能 自保溫墻材研發(fā)地將落戶成都[N];成都日?qǐng)?bào);2006年
5 蔡志明;全國(guó)自保溫節(jié)能示范工程在淮安初試鋒芒[N];中國(guó)建設(shè)報(bào);2007年
相關(guān)博士學(xué)位論文 前1條
1 丁曉燕;不同地區(qū)村鎮(zhèn)住宅混凝土自保溫砌塊砌體的設(shè)計(jì)與研究[D];東南大學(xué);2016年
相關(guān)碩士學(xué)位論文 前9條
1 顏丙坤;一種自保溫多孔砌體墻體抗震性能試驗(yàn)及有限元分析[D];山東大學(xué);2015年
2 蔣美幸;盒式鋼結(jié)構(gòu)自保溫墻體結(jié)構(gòu)體系研究[D];湖南科技大學(xué);2015年
3 劉華存;基于三維穩(wěn)態(tài)傳熱模擬的自保溫系統(tǒng)熱工性能研究[D];浙江大學(xué);2016年
4 林麗;新型自保溫混凝土砌塊砌體墻抗震性能試驗(yàn)研究[D];東南大學(xué);2016年
5 許仲遠(yuǎn);自保溫開槽砌塊灌孔砌體基本力學(xué)性能試驗(yàn)研究[D];湖南大學(xué);2015年
6 成詩(shī)君;自保溫榫式砌塊砌體基本性能研究[D];湖南科技大學(xué);2014年
7 徐云;全灌芯自保溫榫式砌塊砌體結(jié)構(gòu)抗震性能研究[D];湖南科技大學(xué);2014年
8 滕超;燒結(jié)頁(yè)巖空心磚自保溫系統(tǒng)配套材料研究與應(yīng)用[D];重慶大學(xué);2012年
9 邱勇;建筑外墻自保溫材料及體系研究[D];浙江大學(xué);2007年
,本文編號(hào):1868606
本文鏈接:http://www.sikaile.net/jingjilunwen/jianzhujingjilunwen/1868606.html