混合動力燃氣熱泵的優(yōu)化分析及控制模擬
本文選題:混合動力 + 燃氣熱泵; 參考:《東南大學》2015年碩士論文
【摘要】:當今世界能源與環(huán)境成為日益重要的兩大主題,清潔能源的使用和節(jié)能技術的開發(fā)越來越得到人們的重視。隨著人們對生活水平要求的提高,人們對室內空氣品質的要求愈來愈高,空調運用得到了普及。有數(shù)據(jù)顯示我國空調能耗占建筑總能耗55%,而且對環(huán)境的壓力也越來越大。燃氣熱泵由于具有相對較高的一次能源利用率,具有較好的部分負荷特性,對環(huán)境的污染較小,尤其在供熱的情況下具有更好地效果,且其可以調節(jié)高峰用電動時的電力短缺問題,平衡電網(wǎng)峰谷周期,在歐美國家得到廣泛的運用,在我國也漸漸受到重視。與相比普通的燃氣熱泵系統(tǒng),混合動力燃氣熱泵系統(tǒng)可以使燃氣發(fā)動機始終工作在經(jīng)濟區(qū)內,本文主要研究的是一種具有連續(xù)傳動比的混合動力燃氣熱泵系統(tǒng),通過改變傳動比,燃氣發(fā)動機的轉速可以不受壓縮機轉速的限制,從而使燃氣發(fā)動機可以工作在更加節(jié)能的狀態(tài),本文的主要研究內容包括以下幾個方面:(1)設計了一種具有可變傳動比的燃氣熱泵系統(tǒng)。本文中提出了一種具有連續(xù)傳動比的混合動力燃氣熱泵系統(tǒng),該系統(tǒng)主要包括三個部分:驅動系統(tǒng),變速器和熱泵系統(tǒng);旌蟿恿θ細鉄岜孟到y(tǒng)有四種運行模式:燃氣發(fā)動機單獨驅動模式,電機單獨驅動模式,燃氣發(fā)動機驅動并充電模式,燃氣發(fā)動機和電機共同驅動模式。本文詳細分析了四種工作模式下系統(tǒng)的能量流動過程。(2)建立了混合動力燃氣熱泵系統(tǒng)的數(shù)學模型;旌蟿恿θ細鉄岜孟到y(tǒng)的建模主要包括三個部分的建模:驅動系統(tǒng)的建模,變速器的建模和熱泵系統(tǒng)的建模。動力驅動系統(tǒng)的建模主要包括燃氣發(fā)動機,電機及蓄電池的建模。本文對燃氣發(fā)動機采用實驗建模的方法,建立了燃氣發(fā)動機的萬有特性曲線模型。同樣對電機運用實驗建模的方法得到電機的充放電效率模型。熱泵系統(tǒng)的建模主要包括壓縮機,冷凝器,蒸發(fā)器,節(jié)流閥等部件的數(shù)學模型的建立。變速器是鏈接熱泵系統(tǒng)和動力驅動系統(tǒng)的橋梁,本文根據(jù)變速器的輸入與輸出關系建立變速器的數(shù)學模型。(3)基于邏輯門限的控制策略邏輯門限的控制策略是指過制定合理的邏輯規(guī)則來改變和調節(jié)驅動系的工作狀態(tài),使發(fā)動機運行在最佳油耗曲線附近,以達到系統(tǒng)高效率、低排放的目標。本章將采用靜態(tài)邏輯門限控制策略,將壓縮機對驅動系統(tǒng)的需求功率設為門限值,再根據(jù)蓄電池的SOC狀態(tài),選擇合理的燃氣發(fā)動機和電機的工作點。并假定了系統(tǒng)在一個周期內外界的負荷需求,建立了基于Matlab/simulink的模擬平臺,模擬在一個周期內系統(tǒng)的運行情況。(4)基于瞬時優(yōu)化的控制策略瞬時優(yōu)化是指在當前一個外界負荷的需求下,驅動系統(tǒng)如何在燃氣發(fā)動機和電機之間合理的分配功率,已達到瞬間系統(tǒng)最佳運行狀態(tài),瞬時優(yōu)化的控制策略需要一個優(yōu)化參數(shù)。本文選擇驅動系統(tǒng)的等效瞬時燃氣耗量作為優(yōu)化參數(shù),并在設定的外界負荷的條件下同基于邏輯門限的控制策略進行了比較,結果顯示瞬時優(yōu)化的控制策略相對于邏輯門限的控制策略具有較好的節(jié)能效果。
[Abstract]:Energy and environment have become the two major themes in today's world is becoming more and more important in the development and use of energy-saving technology, clean energy has gained more and more attention. With the requirements of people's living standards improve, people on indoor air quality requirements more and more high, the use of air conditioning has been popularized. Data show that air-conditioning energy consumption in China accounted for the construction the total energy consumption of 55%, and the pressure on the environment is also growing. As a result of a gas heat pump energy has relatively high utilization rate, has good partial load characteristic, less pollution to the environment, especially has better effect on heating condition, and it can be used when the electric power shortage peak regulation the balance of power, peak period, has been widely used in Europe and the United States, in China's attention gradually. Compared with the ordinary gas heat pump system, hybrid gas heat pump system can make The gas engine is working in the economic area, the main research of this paper is a continuous transmission ratio of the hybrid gas heat pump system, by changing the transmission ratio, gas engine speed is not affected by the rotational speed of the compressor, so the gas engine can work in a more efficient state, the main contents of this paper include the following: (1) design with a variable transmission ratio of gas heat pump system. This paper presents a continuous transmission ratio of the hybrid gas heat pump system, the system mainly includes three parts: driving system, transmission system and heat pump. The hybrid heat pump system has four operation modes: gas engine driven mode, motor driven mode, gas engine driven and charging mode, the gas engine and motor driven mode. This paper is divided Analysis of the energy flow process of four kinds of work mode system. (2) to establish the mathematical model of hybrid heat pump system. The hybrid modeling of gas heat pump system mainly includes three parts: modeling modeling modeling modeling of the drive system and heat pump system transmission. The main drive system modeling including gas engine, motor and battery modeling. Experimental modeling of the gas engine in this paper, a universal curve model of gas engine. Also the charge discharge efficiency of the motor on the motor using the method of model experiment modeling. The modeling of heat pump system mainly comprises a compressor, condenser, evaporator, throttle valve, mathematical model component. The transmission is a bridge to link the heat pump system and drive system, this paper established the transmission according to the relationship between input and output transmission. The mathematical model (3). The control strategy of logic threshold control strategy based on logic threshold refers to logical rules and reasonable to change and adjust the drive system working condition, make the engine run in the vicinity of the optimal fuel consumption curve, in order to achieve the system of high efficiency, low emissions. This chapter will use the static logic threshold control strategy. The power demand of the drive system of the compressor is set to the threshold value, then according to the SOC of accumulator, gas engine and motor to choose reasonable work. And assume that the system in a periodic external load demand, simulation platform was established based on Matlab/simulink simulation operation system in a period. (4) the optimization of control strategy based on instantaneous instantaneous optimization refers to a current external load demand, allocation of power drive system between gas engine and electric motor is reasonable, Has reached the best operation state instantaneous system, control strategy instantaneous optimization requires a parameter optimization. This paper chooses the equivalent instantaneous gas drive system consumption as optimization parameters, and based on the logic threshold control strategy are compared in the external load setting conditions below, results show that the instantaneous optimization control strategy with respect to the control logic the threshold has a better energy saving effect.
【學位授予單位】:東南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TU831
【參考文獻】
相關期刊論文 前9條
1 王志剛;;燃氣機熱泵的歷史回顧與研究現(xiàn)狀[J];科技信息;2009年19期
2 胡明輝;秦大同;;混合動力汽車鎳氫電池組的充放電效率分析[J];重慶大學學報;2009年03期
3 李應林;張小松;吳薇;;基于混合動力燃氣熱泵的獨立供能系統(tǒng)[J];東南大學學報(自然科學版);2008年06期
4 史琳;薛志方;;熱泵/空調系統(tǒng)仿真和控制研究述評[J];暖通空調;2007年08期
5 楊昭;趙海波;吳坤;;燃氣熱泵仿真研究[J];煤氣與熱力;2006年04期
6 李書澤,張榮榮,張武高,黃震;燃氣熱泵系統(tǒng)中的串級模糊控制[J];上海交通大學學報;2005年08期
7 楊昭,張世鋼,趙海波;燃氣機熱泵排煙余熱回收系統(tǒng)的動態(tài)特性研究[J];太陽能學報;2004年05期
8 楊世文,蘇鐵熊,李炯;基于Modelica語言的面向對象的發(fā)動機建模與仿真[J];車用發(fā)動機;2004年02期
9 王軍,申金升;國內外混合動力電動汽車開發(fā)動態(tài)及發(fā)展趨勢[J];公路交通科技;2000年01期
相關會議論文 前1條
1 蔡亮;張小松;李應林;;混合動力燃氣熱泵空調系統(tǒng)的能量分析模型及其計算[A];制冷空調新技術進展——第四屆全國制冷空調新技術研討會論文集[C];2006年
相關博士學位論文 前2條
1 朱慶林;基于瞬時優(yōu)化的混合動力汽車控制策略研究[D];吉林大學;2009年
2 吳劍;并聯(lián)式混合動力汽車能量管理策略優(yōu)化研究[D];山東大學;2008年
,本文編號:1750669
本文鏈接:http://www.sikaile.net/jingjilunwen/jianzhujingjilunwen/1750669.html