基于最大熵法的鋼框架組合結(jié)構(gòu)地震易損性分析
本文選題:鋼框架結(jié)構(gòu) 切入點:有限元計算 出處:《江西理工大學(xué)》2015年碩士論文
【摘要】:地震、海嘯、泥石流等自然災(zāi)害給人們的生活帶來了不小的影響,而強烈的地震是較為嚴(yán)重的、破壞力極強的自然災(zāi)害之一,以往地震所造成的人員傷亡和財產(chǎn)損失不計其數(shù),且大多數(shù)的損失是由于建筑物的破壞所導(dǎo)致的。建筑設(shè)計者一直都在努力尋找提高結(jié)構(gòu)的抗震能力的方法,同樣有眾多研究人員也在不斷的探尋在地震發(fā)生前如何更為有效的分析結(jié)構(gòu)在地震作用下的響應(yīng),為設(shè)計人員提供一定設(shè)計資料,因此,結(jié)構(gòu)地震易損性研究越來越受到人們的重視。在地震發(fā)生前通過結(jié)構(gòu)地震易損性研究,可以獲得震區(qū)內(nèi)結(jié)構(gòu)在地震作用下可能的損傷狀態(tài),為結(jié)構(gòu)設(shè)計人員有針對的進行抗震設(shè)計提供一定的幫助;在地震發(fā)生后,對災(zāi)區(qū)的震害評估同樣是一項重要的工作任務(wù),這對災(zāi)后的組織救援有著重大的作用。如何在地震未發(fā)生前事先對災(zāi)區(qū)可能發(fā)生的破壞形式及數(shù)量做出災(zāi)害評估,這是地震災(zāi)害的又一種預(yù)防方式。結(jié)構(gòu)易損性分析不僅可以在地震發(fā)生前通過結(jié)構(gòu)設(shè)計思路的優(yōu)化減少地震發(fā)生區(qū)域由于地震帶來的損失,又能在地震發(fā)生后給救援組織者提供一項明確的救援思路,合理分配救災(zāi)資源。所以,結(jié)構(gòu)地震易損性分析對結(jié)構(gòu)的抗震設(shè)計、防災(zāi)減災(zāi)都有著積極的意義。鋼材以其優(yōu)越的抗拉抗壓性能成為建筑結(jié)構(gòu)中必不可少的材料,而鋼框架結(jié)構(gòu)則將鋼材的性能充分發(fā)揮出來,以其優(yōu)越的抗震性能以及較小的自重成為了建筑業(yè)的寵兒,是空間跨度大、抗震性能要求高的建筑物首選結(jié)構(gòu)。然而,在某些地震中鋼框架結(jié)構(gòu)同樣表現(xiàn)出易損的現(xiàn)象,這使得人們對鋼框架結(jié)構(gòu)的抗震性能需要有更加進一步的認(rèn)識,通過對鋼框架結(jié)構(gòu)在地震作用下的結(jié)構(gòu)響應(yīng)進行易損性分析,更加全面細(xì)致的認(rèn)識鋼框架結(jié)構(gòu)在地震作用下的表現(xiàn)。通過對待分析結(jié)構(gòu)進行基于增量動力法的有限元模擬計算,通過設(shè)定一系列的地震動強度,模擬結(jié)構(gòu)在不同強度水平地震作用下結(jié)構(gòu)所產(chǎn)生的響應(yīng),求解結(jié)構(gòu)響應(yīng)所服從的概率分布,根據(jù)事先定義的結(jié)構(gòu)性能水準(zhǔn),確定分析結(jié)構(gòu)在地震作用下達到或超越某一狀態(tài)的概率,然后對不同強度等級的地震作用下達到同一狀態(tài)下的概率點進行擬合,從而得出結(jié)構(gòu)的易損性曲線。對鋼框架結(jié)構(gòu)進行地震易損性分析可以預(yù)測出該結(jié)構(gòu)在不同強度水平的地震動作用下,結(jié)構(gòu)達到或超越某一性能水準(zhǔn)的條件超越概率。由于在進行結(jié)構(gòu)易損性分析時,在確定概率密度分布函數(shù)方面,研究者們大多都是對結(jié)構(gòu)響應(yīng)的分布模式進行假定,按照假定的已知分布模式來求解概率密度函數(shù),這種做法無疑增加了求解結(jié)果中人為主觀因素對最終結(jié)果的影響,使得求解結(jié)果的真實性和準(zhǔn)確性不能得到很好的保障。本文針對結(jié)構(gòu)地震易損性分析中數(shù)據(jù)統(tǒng)計的不確定性問題,引入信息論中的最大熵法應(yīng)用到概率密度函數(shù)的求解當(dāng)中,通過對具有代表性的小樣本數(shù)據(jù)進行分析,并采用遺傳算法優(yōu)化求解概率密度函數(shù)中的參數(shù),確定統(tǒng)計數(shù)據(jù)的概率密度函數(shù),得到更加準(zhǔn)確且符合實際分布的概率密度函數(shù)。最大熵法是解決在測量數(shù)據(jù)處理中摻雜主觀因素,且不能夠準(zhǔn)確反映客觀事實等問題的有效方法,是解決不確定問題的有效工具,在概率統(tǒng)計中得到廣泛應(yīng)用。該方法主要是通過提取測量數(shù)據(jù)中數(shù)據(jù)矩的相關(guān)信息來求解被測量變量的概率密度函數(shù),而不是將被測量數(shù)據(jù)的分布形式假設(shè)成為某個經(jīng)典模型進行概率求解,大大降低了計算過程中人為主觀因素的對結(jié)果的影響。最大熵法可以求解出蘊含信息量最多的概率密度分布函數(shù),分析矩約束與小樣本數(shù)據(jù)之間的關(guān)系,從而得出更加符合實際情況的概率分布。因此,最大熵法是解決不確定問題的最為有效的方法。但是,在使用最大熵法求解概率密度函數(shù)時,由于存在多個未知數(shù)變量且函數(shù)關(guān)系式復(fù)雜,是一個多元多峰的極值問題,一般的數(shù)學(xué)方法很難快速的求得符合要求的數(shù)值,所以本文在求解參數(shù)時使用了遺傳算法來求解多個未知參數(shù),通過算法程序中對所求數(shù)據(jù)的一步步迭代計算,最終獲得最符合目標(biāo)函數(shù)要求的參數(shù)變量的近似數(shù)值。本文通過對鋼框架結(jié)構(gòu)進行地震易損性分析,將結(jié)構(gòu)最大頂點位移和最大層間位移作為結(jié)構(gòu)的整體量化指標(biāo),通過有限元軟件分析利用結(jié)構(gòu)的動力時程分析方法獲得結(jié)構(gòu)響應(yīng)數(shù)據(jù),對結(jié)構(gòu)在不同強度水平的地震作用下的破壞形式進行統(tǒng)計分析,確定結(jié)構(gòu)響應(yīng)所服從的概率密度分布函數(shù)及結(jié)構(gòu)的易損性曲線,為基于位移的抗震設(shè)計提供參考意見,同樣為災(zāi)后組織救援提供一定的資料。
[Abstract]:The earthquake, tsunami, landslides and other natural disasters brought no small impact to people's life, and strong earthquake is more serious, one of the most destructive natural disasters caused by the seismic casualties and property losses and most of the losses are too many to count, because of the destruction of buildings caused by the building designers. Have been trying to find a way to improve the seismic capacity of the structure, there are also many researchers are constantly exploring before the earthquake, how to more effective response analysis of structures under earthquake, in order to provide some design information, therefore, the seismic vulnerability research has attracted more and more attention. By study on the seismic vulnerability before the earthquake, the damage state can be obtained in this area may structure under earthquake, for the structural designers have the anti Provide some help in seismic design; after the earthquake, the damage assessment of the disaster area is also an important task, which has a great effect on the post disaster relief organization. How to make the disaster assessment in the failure form and the number of earthquakes occurred before the disaster may occur, this is another prevention of earthquake disaster vulnerability analysis. Not only can the structure by optimizing the structure of the design before the earthquake, the earthquake region due to reduce the losses caused by the earthquake, and after the earthquake to rescue the organizers to provide a clear idea of the rescue, rational allocation of relief resources. Therefore, the seismic vulnerability analysis of earthquake the design of structure, has positive significance to disaster prevention and mitigation. Steel become indispensable in building structure material with superior tensile and compressive stress, and the steel frame structure is steel material The performance of full play, with its superior seismic performance and smaller weight has become the construction industry darling, is the space span, the seismic performance requirements of high buildings preferred structure. However, in some seismic steel frames show the same vulnerability phenomenon, which makes people on the seismic performance of steel frame structure need to have further understanding of vulnerability through the analysis on the structural response of steel frame structure under earthquake, knowledge of the performance of the steel frame structure is more comprehensive and detailed in earthquake. By treating structural analysis of the finite element simulation method based on incremental dynamic, by setting a series of ground motion intensity response simulation structure produced in different seismic intensity levels under the action of probability distribution to solve structural response, according to the structural performance level defined, determine Analysis of the structure to achieve or exceed probability of one state in the earthquake, and the earthquake on the different intensity levels reached the same point probability under the condition of fitting, thus obtains the structural vulnerability curves. The seismic vulnerability analysis can predict the seismic action of different intensity levels using of steel frame structure, structure to achieve or exceed a certain level of performance. Due to the conditional exceedance probability in structural vulnerability analysis, in determining the probability density distribution function, the researchers are mostly on the distribution mode of structure response was assumed, in accordance with the known distribution mode assumption to solve the probability density function, this approach will undoubtedly the increase in solving the problems of subjective factors on the final results, which makes the calculation results of the authenticity and accuracy can not be guaranteed. According to the structure. Vulnerability analysis of earthquake data in the statistical uncertainty problem in information theory, introduce the maximum entropy method is applied to solve the probability density function, through the analysis of small sample data of the representative, and adopting the optimization parameters for the probability density function of the genetic algorithm to determine the probability density function of statistics, probability the density function is more accurate and consistent with the actual distribution. The maximum entropy method is solved in the measurement data processing method and the subjective factor, can not accurately reflect the objective facts and other issues, is the effective tool to solve the uncertain problem, widely used in probability and statistics. This method is mainly by the probability density function of relevant information data extraction data measured in the moment to solve the measured variables, will instead be distributed form of measurement data are assumed to be a classical model in probability The rate of solution, greatly reduces the calculation process and subjective factors influence on the results. The maximum entropy method can solve the information contained the highest amount of probability density function, analysis of the relationship between the moment constraints and small sample data, so as to get more in line with the actual situation of the probability distribution rate. Therefore, the maximum entropy method is to solve the most an effective method for uncertain problems. However, in the use of the maximum entropy method for solving the probability density function, because there are many unknown variables and the function relation is complex, is a multi peak extremum problem, general mathematical methods are difficult to quickly obtain to meet the requirements of the value, so this paper in solving parameters the genetic algorithm is used to solve the many unknown parameters, the calculation of the data through a step by step iterative algorithm in the procedure, finally obtain numerical approximations of the parameter variables of the objective function requirements. In this paper. Through the analysis of seismic vulnerability of steel frame structure, the maximum displacement and the maximum drift index as a whole structure, through the finite element analysis software using structural dynamic time history analysis method to obtain the structural response data, statistical analysis on the failure mode of structure in earthquake with intensity levels. The response of the structure to determine the probability density function and the structure of the vulnerability curve, provide reference for the displacement based seismic design, also provides a data organization for post disaster relief.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU311.3;TU398
【相似文獻】
相關(guān)期刊論文 前10條
1 高志剛;許金余;白二雷;白應(yīng)生;;灰色統(tǒng)計法在建筑物(群)地震易損性分析中的應(yīng)用[J];四川建筑科學(xué)研究;2013年04期
2 鄧弘深;;建筑結(jié)構(gòu)地震易損性分析方法研究[J];中國水運(下半月);2010年05期
3 溫增平;建筑物地震易損性分析研究[J];國際地震動態(tài);2000年10期
4 呂大剛;王光遠(yuǎn);;基于可靠度和靈敏度的結(jié)構(gòu)局部地震易損性分析[J];自然災(zāi)害學(xué)報;2006年04期
5 李明;鮑雷華;陳紅敏;;具有中介狀態(tài)結(jié)構(gòu)地震易損性分析[J];山西建筑;2010年24期
6 韓淼;李守靜;;基于能力譜法的框架-剪力墻結(jié)構(gòu)地震易損性分析[J];土木工程學(xué)報;2010年S1期
7 周奎;李偉;余金鑫;;地震易損性分析方法研究綜述[J];地震工程與工程振動;2011年01期
8 鄭山鎖;田進;韓言召;徐強;孫樂斌;;考慮銹蝕的鋼結(jié)構(gòu)地震易損性分析[J];地震工程學(xué)報;2014年01期
9 付陟瑋;張東輝;張春明;陳妍;左嘉旭;宋維;;設(shè)備地震易損性分析方法研究[J];核科學(xué)與工程;2013年02期
10 付陟瑋;張東輝;張春明;王U,
本文編號:1715898
本文鏈接:http://www.sikaile.net/jingjilunwen/jianzhujingjilunwen/1715898.html