閾紅利策略下風(fēng)險(xiǎn)模型的相關(guān)問(wèn)題的研究
[Abstract]:Insurance companies are closely related to people's lives. To a certain extent, insurance companies protect people's lives and bear part of the economic losses brought by various extreme events. The normal operation of insurance companies is affected by many factors, such as the number of policy holders, claim factors and so on. Risk theory is to establish a risk model for the earnings of insurance companies in real life, and use the method of probability to study the problems related to the bankruptcy of insurance companies. The initial risk theory is based on ideal conditions, in which the premium per unit time is constant, and the claim arrival intensity is constant. With the further understanding of the stochastic phenomenon, the research methods have been improved and diversified. More and more people tend to improve the risk model and make it more realistic. The main improvements are as follows: first, changing its claim process, popularizing the Poisson process or popularizing its claim intensity; second, changing the unit premium charge constant c into a variable. This is because the real insurance rate is influenced by some factors, and the third is to add the disturbance factor into the classical risk model, that is, the dividend and interest rate in the operation of the real insurance company are added to the model. In reality, insurance companies have different types of insurance, and claims for different types of insurance arrive in different processes, such as tsunamis, The time interval distribution of earthquakes is described by Sparre Andersen risk model, which is better than other models. The conditional Poisson model can be applied to the analysis of alcohol driving accidents. A more consistent model is used to depict risks, so that the study of corporate bankruptcy and the estimation of business prospects are more helpful for people to grasp the control and prevention of risks. On the basis of many research results, this paper studies three different risk models -Erlang (n) risk model and conditional Poisson risk model, considering the factors of claim arrival process, dividend and interest rate. Because the claim arrival process is a stochastic process and the probability is mainly a study of random events, the research methods are mainly based on the methods of probability domain, such as stochastic process, risk theory and probability theory. This paper first introduces the research background and significance of risk theory, domestic and foreign research status. Secondly, based on the classical risk model, the Erlang (n) risk model is studied, and the claim interval distribution is no longer exponential. The differential equation satisfied by the discount penalty function under the constant dividend and the differential equation satisfied by the discount penalty function under the constant interest rate and the constant dividend are obtained by using the differential method. For the Cox risk model, the claim arrival strength is a time-dependent quantity. The martingale method is used to study a bound of the ruin probability under the linear dividend and the ruin probability under the constant interest rate and the linear dividend. Finally, the conditional Poisson risk model, whose claim arrival strength is a variable, is studied by the construction of martingale. A limit of ruin probability under linear dividend and a limit of ruin probability under constant interest rate and linear dividend are studied.
【學(xué)位授予單位】:安徽工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:F224;F840.31
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭立娟;;帶干擾的雙二項(xiàng)風(fēng)險(xiǎn)模型的破產(chǎn)概率[J];長(zhǎng)沙航空職業(yè)技術(shù)學(xué)院學(xué)報(bào);2007年03期
2 丁成;后向法在破產(chǎn)概率研究中的應(yīng)用[J];預(yù)測(cè);2000年02期
3 高建偉,邱菀華;壽險(xiǎn)中的破產(chǎn)理論及應(yīng)用[J];數(shù)理統(tǒng)計(jì)與管理;2002年05期
4 蔣濤,繆柏其;終極破產(chǎn)概率的雙邊界[J];應(yīng)用概率統(tǒng)計(jì);2002年02期
5 郭軍義,張春生;具有時(shí)間相依索賠的破產(chǎn)概率(英文)[J];南開(kāi)大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
6 尹居良;廣義保險(xiǎn)模型的破產(chǎn)概率問(wèn)題研究[J];應(yīng)用數(shù)學(xué);2003年01期
7 楊善朝;復(fù)合二項(xiàng)風(fēng)險(xiǎn)模型破產(chǎn)概率ψ(0)的近似計(jì)算[J];廣西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期
8 高明美,趙明清,王建新;雙二項(xiàng)風(fēng)險(xiǎn)模型的破產(chǎn)概率[J];經(jīng)濟(jì)數(shù)學(xué);2004年01期
9 狄育紅;劉再明;;一類離散雙險(xiǎn)種風(fēng)險(xiǎn)模型的破產(chǎn)概率[J];華東交通大學(xué)學(xué)報(bào);2006年01期
10 陳宜清;董效菊;謝湘生;;在風(fēng)險(xiǎn)投資下破產(chǎn)概率的一個(gè)漸近顯式(英文)[J];應(yīng)用概率統(tǒng)計(jì);2006年02期
相關(guān)會(huì)議論文 前8條
1 郭紅財(cái);王傳玉;陳安平;;變利率相關(guān)風(fēng)險(xiǎn)破產(chǎn)概率的估計(jì)[A];第九屆中國(guó)不確定系統(tǒng)年會(huì)、第五屆中國(guó)智能計(jì)算大會(huì)、第十三屆中國(guó)青年信息與管理學(xué)者大會(huì)論文集[C];2011年
2 陳安平;王傳玉;郭紅財(cái);;帶干擾的相關(guān)風(fēng)險(xiǎn)模型下的破產(chǎn)概率[A];第九屆中國(guó)不確定系統(tǒng)年會(huì)、第五屆中國(guó)智能計(jì)算大會(huì)、第十三屆中國(guó)青年信息與管理學(xué)者大會(huì)論文集[C];2011年
3 李澤慧;沈俊山;朱金霞;;一類風(fēng)險(xiǎn)模型的破產(chǎn)概率估計(jì)[A];2003中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第十一屆學(xué)術(shù)年會(huì)論文集(下)[C];2003年
4 劉俊峰;夏樂(lè)天;;保費(fèi)隨機(jī)的帶干擾離散時(shí)間風(fēng)險(xiǎn)模型的破產(chǎn)概率[A];江蘇省現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第十次學(xué)術(shù)年會(huì)論文集[C];2006年
5 羅旋;劉文芬;;固定利率下離散風(fēng)險(xiǎn)模型中破產(chǎn)概率的若干結(jié)果[A];第二十四屆中國(guó)控制會(huì)議論文集(下冊(cè))[C];2005年
6 羅旋;崔國(guó)忠;;推廣的更新風(fēng)險(xiǎn)模型中破產(chǎn)概率的若干結(jié)果[A];第二十九屆中國(guó)控制會(huì)議論文集[C];2010年
7 佘志芳;耿顯民;;一類帶投資的風(fēng)險(xiǎn)模型破產(chǎn)概率研究[A];中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2005年
8 劉兆君;;保險(xiǎn)公司經(jīng)營(yíng)風(fēng)險(xiǎn)的模糊度量[A];第八屆中國(guó)不確定系統(tǒng)年會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 徐海熙;新手膽子大 老手膽子小[N];期貨日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 馬東興;幾類相依二維風(fēng)險(xiǎn)模型的破產(chǎn)問(wèn)題的研究[D];吉林大學(xué);2015年
2 高慶武;若干非標(biāo)準(zhǔn)風(fēng)險(xiǎn)模型的破產(chǎn)概率的漸近性態(tài)[D];蘇州大學(xué);2010年
3 陳洋;二維風(fēng)險(xiǎn)模型的破產(chǎn)概率的漸近性分析[D];蘇州大學(xué);2013年
4 張媛媛;幾類重尾風(fēng)險(xiǎn)模型破產(chǎn)概率的研究[D];華東師范大學(xué);2014年
5 白曉東;重尾相依風(fēng)險(xiǎn)模型破產(chǎn)概率的漸近性分析[D];大連理工大學(xué);2012年
6 董英華;隨機(jī)利率下風(fēng)險(xiǎn)模型破產(chǎn)概率的研究[D];蘇州大學(xué);2012年
7 郭風(fēng)龍;考慮投資收益和相依結(jié)構(gòu)的保險(xiǎn)風(fēng)險(xiǎn)模型破產(chǎn)概率研究[D];電子科技大學(xué);2012年
8 趙武;聚合風(fēng)險(xiǎn)模型下保險(xiǎn)公司的投資策略和破產(chǎn)概率的研究[D];電子科技大學(xué);2009年
9 龔日朝;幾類風(fēng)險(xiǎn)模型破產(chǎn)概率及其漸近解研究[D];中南大學(xué);2007年
10 廖基定;幾類風(fēng)險(xiǎn)模型破產(chǎn)問(wèn)題的研究[D];中南大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 王晶晶;關(guān)于不同模型之下破產(chǎn)概率漸進(jìn)估計(jì)的研究[D];安徽師范大學(xué);2012年
2 陳奕含;多險(xiǎn)種風(fēng)險(xiǎn)模型的研究[D];渤海大學(xué);2015年
3 卜曉明;復(fù)合泊松風(fēng)險(xiǎn)模型及其推廣模型的破產(chǎn)概率研究[D];渤海大學(xué);2015年
4 劉媛媛;幾種變破產(chǎn)下限風(fēng)險(xiǎn)模型破產(chǎn)概率的研究[D];燕山大學(xué);2015年
5 楊析怡;連續(xù)時(shí)間多險(xiǎn)種模型的破產(chǎn)概率[D];渤海大學(xué);2015年
6 王施施;帶投資的雙險(xiǎn)種風(fēng)險(xiǎn)模型的破產(chǎn)概率的研究[D];杭州師范大學(xué);2016年
7 徐天明;重尾分布下隨機(jī)經(jīng)濟(jì)環(huán)境的破產(chǎn)概率漸近估計(jì)[D];南京農(nóng)業(yè)大學(xué);2014年
8 田俊杰;三險(xiǎn)種的復(fù)合風(fēng)險(xiǎn)模型[D];渤海大學(xué);2016年
9 張艷;雙復(fù)合二項(xiàng)風(fēng)險(xiǎn)模型的破產(chǎn)概率[D];河南理工大學(xué);2014年
10 袁遠(yuǎn);基于破產(chǎn)概率的保險(xiǎn)投資策略和保費(fèi)定價(jià)[D];福州大學(xué);2013年
,本文編號(hào):2124561
本文鏈接:http://www.sikaile.net/jingjilunwen/hongguanjingjilunwen/2124561.html