基于半監(jiān)督協(xié)同訓(xùn)練的文本情感分類研究
[Abstract]:With the rapid development of Web2.0, a large number of user-generated content (User Generated Content). Have been generated on the Internet. These user-generated content contains a large amount of useful emotional information, which is of great value to user decision-making and product improvement in enterprises. Therefore, how to use text emotion classification technology to mine the emotional information in the massive user-generated content has become a hot issue in academia and industry. Although the text affective classification method based on machine learning has achieved good results, it takes a lot of manpower to obtain labeled samples in practical applications. On the contrary, it is very easy to obtain unlabeled samples. Therefore, how to use a small number of labeled samples and a large number of unlabeled samples for text affective classification has become an urgent problem. In order to solve the problem of using unlabeled samples in text affective classification, semi-supervised cooperative training method is introduced into text affective classification. Firstly, this study analyzes the current situation of text affective classification and semi-supervised learning, and clarifies the current research issues and future research directions. Secondly, this study systematically studies the basic theories of text emotion classification and semi-supervised learning, analyzes the main tasks of text emotion classification, the main methods of text emotion classification, and the basic assumptions of semi-supervised learning. The effectiveness of semi-supervised learning and the main methods of semi-supervised learning and other basic theories. Then, based on this, the text emotion classification method based on semi-supervised cooperative training is studied. Considering that the current research has paid little attention to the influence of data distribution on text affective classification, this study constructs the text emotional classification model based on IDSSL under the condition of data distribution equilibrium from the two angles of data distribution equilibrium or not. And the text emotion classification model based on mixed strategy under the condition of unbalanced data distribution. Finally, the text emotion classification method based on semi-supervised cooperative training is introduced into the practical application, and two practical application scenarios, e-commerce and medical social media, are selected. The validity of two kinds of text emotion classification methods based on semi-supervised cooperative training is tested. The experimental results show that the proposed method has better results under different data distribution conditions, thus validating the effectiveness of the proposed method. Through this research, on the one hand, the semi-supervised learning method is introduced into the text affective classification problem, which expands the basic theory of text affective classification and semi-supervised learning. Based on this, a text emotion classification model based on semi-supervised cooperative training is constructed. On the other hand, the text emotion classification model based on semi-supervised cooperative training is applied to practical problems, which extends the application of text emotion classification and semi-supervised learning.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TP391.1;F724.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉敏;謝伙生;;一種基于旋轉(zhuǎn)森林的集成協(xié)同訓(xùn)練算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年30期
2 胡菊花;姜遠(yuǎn);周志華;;一種基于教學(xué)模型的協(xié)同訓(xùn)練方法[J];計(jì)算機(jī)研究與發(fā)展;2013年11期
3 尹哲峰;崔榮一;;協(xié)同訓(xùn)練在教師評(píng)估中的應(yīng)用[J];延邊大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
4 武永成;;一種基于分類置信度差異性的協(xié)同訓(xùn)練算法[J];湖北民族學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年01期
5 徐飛裕;徐榮聰;;基于密度敏感距離的協(xié)同訓(xùn)練算法[J];計(jì)算機(jī)應(yīng)用與軟件;2011年09期
6 馬蕾;汪西莉;;基于支持向量機(jī)協(xié)同訓(xùn)練的半監(jiān)督回歸[J];計(jì)算機(jī)工程與應(yīng)用;2011年03期
7 詹永照;陳亞必;;具有噪聲過(guò)濾功能的協(xié)同訓(xùn)練半監(jiān)督主動(dòng)學(xué)習(xí)算法[J];模式識(shí)別與人工智能;2009年05期
8 謝伙生;劉敏;;一種基于主動(dòng)學(xué)習(xí)的集成協(xié)同訓(xùn)練算法[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2012年03期
9 李廣水;宋丁全;鄭滔;李楊;蘇繼申;;協(xié)同訓(xùn)練支持向量機(jī)對(duì)遙感影像的分類研究[J];計(jì)算機(jī)工程與應(yīng)用;2009年29期
10 謝科;;融合協(xié)同訓(xùn)練和兩層主動(dòng)學(xué)習(xí)策略的SVM分類方法[J];湖南師范大學(xué)自然科學(xué)學(xué)報(bào);2014年01期
相關(guān)重要報(bào)紙文章 前10條
1 文雅 丁猛 王方靖;某部多法并舉解決協(xié)同訓(xùn)練難題[N];戰(zhàn)士報(bào);2008年
2 張新兵 唐廷剛 趙榮;兵種專業(yè)“結(jié)親”夯實(shí)協(xié)同訓(xùn)練基礎(chǔ)[N];中國(guó)國(guó)防報(bào);2009年
3 記者 李學(xué)勇 特約記者 代宗鋒;赴遠(yuǎn)海開(kāi)展協(xié)同訓(xùn)練[N];解放軍報(bào);2010年
4 楊先富、胡金寶、車益洪;打破建制 協(xié)同訓(xùn)練[N];戰(zhàn)士報(bào);2012年
5 陳振東 李東生;緊貼使命任務(wù)要求砥礪精兵[N];解放軍報(bào);2009年
6 王小興、楊志;總裝某測(cè)試站協(xié)同訓(xùn)練提升試驗(yàn)?zāi)芰N];解放軍報(bào);2006年
7 蘇俊杰、特約通訊員 王宇;一批協(xié)同訓(xùn)練課目成重點(diǎn)[N];中國(guó)國(guó)防報(bào);2006年
8 彭兵根 記者 劉建偉;訓(xùn)練資源重點(diǎn)投向關(guān)鍵節(jié)點(diǎn)[N];解放軍報(bào);2010年
9 楊申勇 特約記者 唐青松;指揮程序一個(gè)不簡(jiǎn) “戰(zhàn)斗”全程模擬實(shí)戰(zhàn)[N];戰(zhàn)士報(bào);2007年
10 高志群 成立 錢英新;加強(qiáng)科技動(dòng)員力量培訓(xùn)[N];中國(guó)國(guó)防報(bào);2010年
相關(guān)碩士學(xué)位論文 前3條
1 鄒細(xì)濤;基于樣本去噪的協(xié)同訓(xùn)練算法研究[D];西南大學(xué);2015年
2 李寧寧;基于半監(jiān)督協(xié)同訓(xùn)練的文本情感分類研究[D];合肥工業(yè)大學(xué);2015年
3 魏輝;飛機(jī)與船舶協(xié)同訓(xùn)練RTI仿真平臺(tái)的設(shè)計(jì)與實(shí)現(xiàn)[D];沈陽(yáng)航空航天大學(xué);2013年
,本文編號(hào):2426492
本文鏈接:http://www.sikaile.net/jingjilunwen/guojimaoyilunwen/2426492.html