天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

獎勵式眾籌融資績效的影響因素及預(yù)測研究

發(fā)布時(shí)間:2018-01-17 23:35

  本文關(guān)鍵詞:獎勵式眾籌融資績效的影響因素及預(yù)測研究 出處:《吉林財(cái)經(jīng)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 獎勵式眾籌 最優(yōu)尺度模型 SOM算法 預(yù)測


【摘要】:2009年,第一個獎勵式眾籌平臺kickstarter在美國成立。在此之后,獎勵式眾籌平臺迅速在全球范圍內(nèi)發(fā)展,在歐洲和美洲逐漸走向成熟并發(fā)展到了亞洲、中南美洲和非洲等各個地區(qū)。2011年7月,我們國家第一個獎勵式眾籌平臺“點(diǎn)名時(shí)間”成立,這象征著我國眾籌平臺方面的開始。在接下來的幾年里,很多不同模式的眾籌平臺迅速成立。據(jù)鳴金網(wǎng)數(shù)據(jù)中心不完全統(tǒng)計(jì),截止到2015年11月底,被鳴金網(wǎng)收錄的眾籌網(wǎng)站有265個,其中獎勵式眾籌網(wǎng)站105個,約占39.6%。在項(xiàng)目的量上,獎勵式眾籌的數(shù)目最多。因此,本文利用眾籌網(wǎng)(http://www.zhongchou.com)中的3468個獎勵式眾籌項(xiàng)目對影響其融資績效的因素做分析,并且對獎勵式眾籌項(xiàng)目融資績效進(jìn)行預(yù)測研究,為我國獎勵式眾籌的發(fā)展提供理論和實(shí)證基礎(chǔ)。本文采用眾籌網(wǎng)平臺中的交易數(shù)據(jù)對獎勵式眾籌融資績效的影響因素做分析,并預(yù)測獎勵式眾籌的融資績效。通過最優(yōu)尺度模型分析獎勵式眾籌的顯著影響因素和非顯著影響因素,探索這些影響因素之所以顯著和非顯著的原因。再運(yùn)用SOM算法將融資績效離散化,目的是運(yùn)用C5.0決策樹算法、支持向量機(jī)算法和TAN貝葉斯網(wǎng)絡(luò)算法對融資績效進(jìn)行預(yù)測分析。對比分析C5.0決策樹算法、支持向量機(jī)算法和TAN貝葉斯網(wǎng)絡(luò)這三種預(yù)測方法,得出C5.0決策樹的預(yù)測最優(yōu)。研究結(jié)果表明:項(xiàng)目名稱長度、籌到的金額、項(xiàng)目所屬的行業(yè)、項(xiàng)目所在的城市和評論數(shù)對融資績效的影響較大。然而,籌資天數(shù)、發(fā)起人信息、是否有視頻、關(guān)注數(shù)、支持?jǐn)?shù)、項(xiàng)目更新、項(xiàng)目回報(bào)方式和項(xiàng)目回報(bào)時(shí)間是對籌資績效的影響較小。C5.0決策樹算法、支持向量機(jī)算法和TAN貝葉斯網(wǎng)絡(luò)算法,這三種算法中,C5.0決策樹的預(yù)測效果最好。另外,對于除了1類績效以外的預(yù)測,C5.0的預(yù)測結(jié)果比支持向量機(jī)和TAN貝葉斯網(wǎng)絡(luò)的預(yù)測準(zhǔn)確度要高。基于理論和實(shí)際的研究,對于項(xiàng)目籌資人,本文建議籌資項(xiàng)目名稱命名要合理和有吸引力,目標(biāo)金額要根據(jù)實(shí)際情況來設(shè)置,籌資人要及時(shí)回復(fù)投資人的評論和建議,多增加互動。對于項(xiàng)目投資人,要注重中后續(xù)項(xiàng)目的發(fā)展以及獎勵式眾籌回報(bào)的方式。對于獎勵式眾籌行業(yè),建議相關(guān)部門的監(jiān)管需要進(jìn)一步明確思路,該行業(yè)也要逐步走向規(guī)范。獎勵式眾籌平臺需要探索新的模式,獎勵式眾籌可以擴(kuò)展到一些新的行業(yè)。
[Abstract]:In 2009, the first reward crowdfunding platform kickstarter was founded in the United States. Since then, the reward crowdfunding platform has developed rapidly around the world. In Europe and America gradually matured and developed to Asia, Central and South America and Africa and other regions. July 2011, our country's first incentive crowdfunding platform "roll call time" was established. This symbolizes the beginning of our crowdfunding platform. In the next few years, many different models of crowdfunding platform were quickly established. There are 265 crowdfunding websites included by Ming Jin. Among them, 105 are reward crowdfunding websites, which account for 39.6. in the number of projects, the number of award crowdfunding is the largest. Therefore. This paper uses 3468 incentive crowdfunding projects in http: / / www.zhongchou.comto analyze the factors that affect its financing performance. And the incentive crowdfunding project financing performance prediction research. To provide theoretical and empirical basis for the development of incentive crowdfunding. This paper uses the transaction data in crowdfunding platform to analyze the factors affecting the performance of incentive crowdfunding. And forecast the financing performance of incentive crowdfunding. Through the optimal scale model to analyze the significant and non-significant factors of incentive crowdfunding. To explore the reasons why these factors are significant and non-significant, and then use the SOM algorithm to discretize the financing performance, the purpose is to use C5.0 decision tree algorithm. Support vector machine (SVM) algorithm and TAN Bayesian network algorithm are used to predict the financing performance. Three forecasting methods, C5.0 decision tree algorithm, support vector machine algorithm and TAN Bayesian network, are compared and analyzed. The results show that the length of the project name, the amount of money raised, the industry the project belongs to, the city where the project is located and the number of comments have great influence on the financing performance. Funding days, sponsor information, whether there is video, attention, support, project update, project return mode and project return time are the smaller impact on funding performance. C5.0 decision tree algorithm. Support vector machine algorithm and TAN Bayesian network algorithm, these three algorithms, C5.0 decision tree prediction effect is the best. In addition, for the prediction of performance other than class 1. The prediction accuracy of C5.0 is higher than that of support vector machine and TAN Bayesian network. This paper suggests that the name of the fund-raising project should be reasonable and attractive, the target amount should be set according to the actual situation, the fundraiser should respond to the comments and suggestions of the investors in time, and increase the interaction. We should pay attention to the development of the follow-up projects and the way of reward crowdfunding. For the reward crowdfunding industry, it is suggested that the supervision of the relevant departments need to further clarify the thinking. The industry also needs to be standardized. The reward crowdfunding platform needs to explore new models, and the reward crowdfunding can be extended to some new industries.
【學(xué)位授予單位】:吉林財(cái)經(jīng)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F724.6;F832.39

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 羅麗;劉芳;康海琪;何忠偉;;北京市畜禽養(yǎng)殖疫病防控的影響因素研究——基于最優(yōu)尺度回歸分析[J];中國畜牧雜志;2016年04期

2 馬鵬杰;佟昕;張世奇;慕小水;;最優(yōu)尺度回歸在儲層孔隙度主控因素分析中的應(yīng)用[J];沉積與特提斯地質(zhì);2015年03期

3 王輝;孫仙;徐生剛;白亞娜;胡曉斌;趙遲;;最優(yōu)尺度回歸分析在老年消化道腫瘤患者住院費(fèi)用影響因素中的應(yīng)用[J];中國老年學(xué)雜志;2015年11期

4 張荔仙;王偉明;;眾籌融資模式的風(fēng)險(xiǎn)研究[J];現(xiàn)代經(jīng)濟(jì)信息;2015年08期

5 盧子敏;;浙江省養(yǎng)老機(jī)構(gòu)服務(wù)人員工作滿意度影響因素的最優(yōu)尺度回歸分析[J];經(jīng)濟(jì)師;2015年02期

6 海川;;眾籌:創(chuàng)業(yè)融資新渠道[J];新經(jīng)濟(jì)導(dǎo)刊;2015年Z1期

7 陳秀梅;程晗;;眾籌融資信用風(fēng)險(xiǎn)分析及管理體系構(gòu)建[J];財(cái)經(jīng)問題研究;2014年12期

8 黃揚(yáng)略;張婷;;黨報(bào)微博被關(guān)注程度影響因素最優(yōu)尺度回歸分析——以三家黨報(bào)的新浪法人微博為例[J];湖北社會科學(xué);2014年09期

9 宋柯均;呂笑微;;國內(nèi)股權(quán)眾籌網(wǎng)站發(fā)展探析[J];現(xiàn)代物業(yè)(中旬刊);2014年08期

10 黃玲;周勤;;創(chuàng)意眾籌的異質(zhì)性融資激勵與自反饋機(jī)制設(shè)計(jì)研究——以“點(diǎn)名時(shí)間”為例[J];中國工業(yè)經(jīng)濟(jì);2014年07期

相關(guān)重要報(bào)紙文章 前2條

1 于德良;;汽車眾籌一個月連爆10“雷” 難擋新平臺魚貫入場[N];證券日報(bào);2016年

2 ;2015年全國眾籌行業(yè)籌資過百億元[N];中華工商時(shí)報(bào);2016年

相關(guān)博士學(xué)位論文 前4條

1 鄧榮根;森林聲景觀品質(zhì)分析[D];江西農(nóng)業(yè)大學(xué);2012年

2 伊衛(wèi)國;基于關(guān)聯(lián)規(guī)則與決策樹的預(yù)測方法研究及其應(yīng)用[D];大連海事大學(xué);2012年

3 胡春玲;貝葉斯網(wǎng)絡(luò)結(jié)構(gòu)學(xué)習(xí)及其應(yīng)用研究[D];合肥工業(yè)大學(xué);2011年

4 李莉;基于網(wǎng)絡(luò)嵌入性的核心企業(yè)知識擴(kuò)散方式對知識獲取績效的影響研究[D];西安理工大學(xué);2008年

相關(guān)碩士學(xué)位論文 前6條

1 梁森;中挪水產(chǎn)品貿(mào)易發(fā)展與潛力分析[D];中國海洋大學(xué);2015年

2 程廣南;國內(nèi)眾籌出版現(xiàn)狀研究[D];安徽大學(xué);2015年

3 鐘超;中國眾籌平臺的羊群行為研究[D];南京大學(xué);2015年

4 周小斌;眾籌模式融資可得性影響因素研究[D];湖南大學(xué);2014年

5 張倩;基于決策樹方法的航空高光譜遙感土地覆蓋分類研究[D];山東科技大學(xué);2005年

6 栗媛;基于決策樹分類算法的CRM系統(tǒng)研究[D];山東科技大學(xué);2005年

,

本文編號:1438505

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jingjilunwen/guojimaoyilunwen/1438505.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ac923***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com