股票分類指數(shù)的多元馬爾可夫鏈模型
發(fā)布時間:2018-11-24 07:33
【摘要】:針對多元馬爾可夫鏈模型分析中,待估參數(shù)數(shù)量大而導致估計困難的問題,文章提出了改進方法。以一元預測誤差最小為優(yōu)化目標,對列間權重參數(shù)進行了分批次優(yōu)化求解。應用多元馬爾可夫鏈模型,對股票五大行業(yè)分類指數(shù)序列進行建模,研究了各行業(yè)分類指數(shù)相互間的內(nèi)在相依特征。應用數(shù)據(jù)序列間的多元交互信息,對行業(yè)分類股指序列進行了預測。
[Abstract]:In order to solve the problem of large number of parameters to be estimated in multivariate Markov chain model analysis, an improved method is proposed in this paper. With the minimum prediction error as the optimization objective, the weight parameters between columns are solved by batch optimization. In this paper, the multiple Markov chain model is used to model the stock classification index series of five major industries, and the internal dependence characteristics of each industry classification index are studied. This paper predicts the industry classification stock index series by using the multiple interactive information between the data series.
【作者單位】: 重慶大學經(jīng)濟與工商管理學院;重慶大學數(shù)學與統(tǒng)計學院;
【基金】:國家自然科學基金資助項目(71171209)
【分類號】:F830.91;F224
本文編號:2352802
[Abstract]:In order to solve the problem of large number of parameters to be estimated in multivariate Markov chain model analysis, an improved method is proposed in this paper. With the minimum prediction error as the optimization objective, the weight parameters between columns are solved by batch optimization. In this paper, the multiple Markov chain model is used to model the stock classification index series of five major industries, and the internal dependence characteristics of each industry classification index are studied. This paper predicts the industry classification stock index series by using the multiple interactive information between the data series.
【作者單位】: 重慶大學經(jīng)濟與工商管理學院;重慶大學數(shù)學與統(tǒng)計學院;
【基金】:國家自然科學基金資助項目(71171209)
【分類號】:F830.91;F224
【二級參考文獻】
相關期刊論文 前4條
1 侯木舟,韓旭里;基于MATLAB的神經(jīng)網(wǎng)絡在股市預測中的應用[J];系統(tǒng)工程;2003年02期
2 李一軍,葉強;基于BP神經(jīng)網(wǎng)絡的產(chǎn)品報價決策支持方法及其報價風險研究[J];管理工程學報;2003年04期
3 禹建麗,孫增圻,Valeri.Kroumov,成久洋之,劉治軍;基于BP神經(jīng)網(wǎng)絡的股市建模與決策[J];系統(tǒng)工程理論與實踐;2003年05期
4 張秀艷,徐立本;基于神經(jīng)網(wǎng)絡集成系統(tǒng)的股市預測模型[J];系統(tǒng)工程理論與實踐;2003年09期
,本文編號:2352802
本文鏈接:http://www.sikaile.net/jingjilunwen/guojijinrong/2352802.html
最近更新
教材專著