基于電力消耗的行業(yè)總產(chǎn)值預測
發(fā)布時間:2018-11-08 13:55
【摘要】:電力行業(yè)是國民經(jīng)濟的基礎性能源產(chǎn)業(yè),對其他行業(yè)的發(fā)展起著至關(guān)重要的支撐作用。電力行業(yè)本身不存在庫存現(xiàn)象進而能夠相對真實近乎實時地反映行業(yè)經(jīng)濟運行情況,這使得從電力消耗到行業(yè)總產(chǎn)值的預測成為可能。針對某省規(guī)模以上工業(yè)企業(yè)基于電力消耗的總產(chǎn)值預測問題展開研究,結(jié)合該省2010—2013年近38 000家規(guī)模以上工業(yè)企業(yè)的用電量和總產(chǎn)值數(shù)據(jù),利用基于粒子群優(yōu)化參數(shù)的支持向量機建立預測模型。以2010年1月至2013年12月的數(shù)據(jù)作為訓練樣本,對2013年8月至2013年12月各行業(yè)的總產(chǎn)值進行預測和檢驗,并與常規(guī)交叉驗證尋優(yōu)的支持向量機模型和BP(back propagation)神經(jīng)網(wǎng)絡模型進行對比。結(jié)果表明,所采用的方法較其他方法可以更準確、可靠地預測行業(yè)總產(chǎn)值,基于用電量的行業(yè)總產(chǎn)值預測方法是科學、可行的。
[Abstract]:Electric power industry is the basic energy industry of national economy, which plays a vital role in supporting the development of other industries. There is no inventory phenomenon in the power industry itself, which can reflect the economic operation of the industry in real and near real time, which makes it possible to predict the total output value from the power consumption to the industry. Aiming at the problem of forecasting the total output value of industrial enterprises above the scale of a province based on electricity consumption, combining with the data of electricity consumption and total output value of nearly 38,000 industrial enterprises over the scale of the province from 2010 to 2013, Support vector machine (SVM) based on particle swarm optimization (PSO) parameters is used to build prediction model. Using data from January 2010 to December 2013 as a training sample to forecast and test the gross output value of industries from August 2013 to December 2013, It is compared with the support vector machine model and BP (back propagation) neural network model. The results show that the method is more accurate and reliable than other methods, and the method based on electricity consumption is scientific and feasible.
【作者單位】: 武漢大學動力與機械學院;
【分類號】:F426.61
[Abstract]:Electric power industry is the basic energy industry of national economy, which plays a vital role in supporting the development of other industries. There is no inventory phenomenon in the power industry itself, which can reflect the economic operation of the industry in real and near real time, which makes it possible to predict the total output value from the power consumption to the industry. Aiming at the problem of forecasting the total output value of industrial enterprises above the scale of a province based on electricity consumption, combining with the data of electricity consumption and total output value of nearly 38,000 industrial enterprises over the scale of the province from 2010 to 2013, Support vector machine (SVM) based on particle swarm optimization (PSO) parameters is used to build prediction model. Using data from January 2010 to December 2013 as a training sample to forecast and test the gross output value of industries from August 2013 to December 2013, It is compared with the support vector machine model and BP (back propagation) neural network model. The results show that the method is more accurate and reliable than other methods, and the method based on electricity consumption is scientific and feasible.
【作者單位】: 武漢大學動力與機械學院;
【分類號】:F426.61
【參考文獻】
相關(guān)期刊論文 前6條
1 肖漢光;蔡從中;;特征向量的歸一化比較性研究[J];計算機工程與應用;2009年22期
2 吳宏曉;侯志儉;;基于免疫加權(quán)支持向量機方法的短期負荷預測[J];中國電力;2005年08期
3 鮑永勝;吳振升;;基于SVM的時間序列短期風速預測[J];中國電力;2011年09期
4 甘露;;中國電力消費與經(jīng)濟增長的關(guān)系研究[J];中南財經(jīng)政法大學研究生學報;2011年04期
5 李科;;基于閾值回歸模型的中國電力消費與經(jīng)濟增長的關(guān)系[J];系統(tǒng)工程理論與實踐;2012年08期
6 馮勇;葛運建;曹會彬;孫玉香;;Learning control of nonhonolomic robot based on support vector machine[J];Journal of Central South University;2012年12期
【共引文獻】
相關(guān)期刊論文 前10條
1 宋昊蘇;李寧;張偉;;VSM模型在文檔結(jié)構(gòu)識別中的應用[J];北京信息科技大學學報(自然科學版);2011年06期
2 鄒鵬;姜秋喜;莫翠瓊;潘繼飛;;基于SVM識別的雷達輻射源特征向量歸一化研究[J];電子信息對抗技術(shù);2010年06期
3 林銘德;戴一t,
本文編號:2318690
本文鏈接:http://www.sikaile.net/jingjilunwen/gongyejingjilunwen/2318690.html
最近更新
教材專著