二維風(fēng)險(xiǎn)模型的破產(chǎn)概率的漸近性分析
[Abstract]:As is well known, the probability of ruin is one of the main research objects of actuarial mathematics and application probability theory. Because in most cases, it is not easy to calculate the value of the probability of the ruin, the asymptotic behavior of the probability of the ruin is especially important, and the asymptotic estimation of the probability of the ruin is of great theoretical and practical value to the risk management. From the time of Lundberg (1903)[69], the asymptotic theory of the probability of bankruptcy has become a very active research field. In the beginning of the study, one-dimensional update risk model was mainly studied. But in the real life, it is almost impossible for the insurance company to run only one kind of insurance, so the multi-risk model of the multi-risk model is put on the schedule because it has more practical meaning. The multi-dimensional update risk model is often more complex than the one-dimensional case, and the calculation is more complicated, and some new mathematical problems need to be solved. On the other hand, it is found that some high-dimensional update risk models do not differ significantly from the two-dimensional update risk model. Therefore, this paper will study the consistent asymptotic theory of the probability of the two-dimensional update risk in the case of the finite-time ruin probability of the two-dimensional update risk model. First of all, we have studied the agreement of the non-standard two-dimensional update risk model with no interest rate, which is consistent with the probability of the bankruptcy. The claim amount is an independent and distributed random variable whose distribution belongs to the intersection of the long tail distribution family and the control change tail distribution family (see definitions 1.2 and 1.5 below). The time interval of the claim arrival meeting the broad negative quadrant dependent or wide-quadrant dependency structure (see definition 1. 8 below) In the case of the simultaneous arrival of the two claims, the asymptotic formula of the probability of the ruin is obtained, which is set up in the time t[f (x), b) of the insurance company's business time, here. f (x) is any infinite increment The result uses a different method of proof than Chen et al. (2011)[27], expanding the range of its distribution and dependent structures, and weakening some of them Conditions. Second, we have studied the finite-time ruin probability of two non-standard two-dimensional update risk models with interest rate and interference In these two models, the two types of claims are divided into two cases which arrive at the same time and do not arrive at the same time. The claim amount satisfies the dependent structure of the last-tail asymptotic independent. The distribution also belongs to the tail-tail distribution family and the control change tail. The intersection of the distribution family and the time interval between the claim arrival and the time of the claim meet the wide image. For each case, we obtain three of the three probability of bankruptcy in a limited period of time, respectively. An asymptotic estimation is made. These results also use a different method of proof from Li et al (2007)[65] and Bai and Song (2011)[12], and has extended some of the results of Li et al (2007)[65] and Bai and Song (2011)[1 2]. Finally, we have studied the finite-time bankruptcy of a class of time-dependent two-dimensional update risk model The consistent asymptotic behavior of the probability. The two claims arrive at the same time, the amount claimed is an independent and distributed random variable, the distribution of which belongs to the sub-exponential distribution family (as defined in the definition of 1.3 below), and both claimed amounts and their time of arrival With some sort of dependency. We've got a limited set of bankruptcy. The consistent asymptotic estimation of the rate. This results in the results of the one-dimensional (2010)[5], Li et al (2010)[67] one-dimensional results under the appropriate conditions It can be seen that, unlike the previous two studies, the dependence structure between the amount of the claim and the time of arrival of the study in the study is asymptotic to the probability of the ruin. It can be found from the above results that the non-standard update model processed in this paper has four characteristics: the dependence of the random variables, the retails of the distribution of the random variables, and the multi-dimensional of the insurance variety. The consistency of the performance and the asymptotic estimates. The consistency here can indicate the size of the insurance company's initial capital and the insurance policy In other words, regardless of how many years the insurance company intends to operate, the risk is to be controlled The same size of initial capital is required. These results not only enrich the content of the two-dimensional update risk model, but also in the financial insurance
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:F840.3;O211.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 畢秀春,尹傳存;更新風(fēng)險(xiǎn)模型中破產(chǎn)概率的一個(gè)局部結(jié)果[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯(中文版);2005年01期
2 唐啟鶴;重尾索賠下關(guān)于破產(chǎn)概率的一個(gè)等價(jià)式[J];中國科學(xué)A輯;2002年03期
3 王楚;;重尾分布破產(chǎn)概率研究的最新進(jìn)展綜述[J];楚雄師范學(xué)院學(xué)報(bào);2006年09期
4 賈學(xué)龍;楊華;郭軍義;;復(fù)合二項(xiàng)模型中期望罰金函數(shù)的研究[J];天津理工大學(xué)學(xué)報(bào);2010年05期
5 孔繁超,曹龍,王金亮;關(guān)于更新風(fēng)險(xiǎn)模型中破產(chǎn)概率的若干結(jié)果[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯(中文版);2003年02期
6 江濤,蘇淳;延遲更新過程大索賠破產(chǎn)概率的尾等價(jià)公式[J];中國科學(xué)技術(shù)大學(xué)學(xué)報(bào);2002年01期
7 龔日朝;鄒捷中;;重尾索賠下更新風(fēng)險(xiǎn)模型生存概率局部估計(jì)解[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);2006年05期
8 孔繁超,曹龍;更新風(fēng)險(xiǎn)模型和延遲更新風(fēng)險(xiǎn)模型中破產(chǎn)概率的若干結(jié)果[J];數(shù)學(xué)年刊A輯(中文版);2003年01期
9 江濤;;正則變化場(chǎng)合常數(shù)利息力度的破產(chǎn)概率[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2008年08期
10 葛明星;;一類厚尾延遲更新風(fēng)險(xiǎn)模型的破產(chǎn)概率[J];高師理科學(xué)刊;2011年04期
相關(guān)會(huì)議論文 前10條
1 郭紅財(cái);王傳玉;陳安平;;變利率相關(guān)風(fēng)險(xiǎn)破產(chǎn)概率的估計(jì)[A];第九屆中國不確定系統(tǒng)年會(huì)、第五屆中國智能計(jì)算大會(huì)、第十三屆中國青年信息與管理學(xué)者大會(huì)論文集[C];2011年
2 羅旋;崔國忠;;推廣的更新風(fēng)險(xiǎn)模型中破產(chǎn)概率的若干結(jié)果[A];第二十九屆中國控制會(huì)議論文集[C];2010年
3 陳安平;王傳玉;郭紅財(cái);;帶干擾的相關(guān)風(fēng)險(xiǎn)模型下的破產(chǎn)概率[A];第九屆中國不確定系統(tǒng)年會(huì)、第五屆中國智能計(jì)算大會(huì)、第十三屆中國青年信息與管理學(xué)者大會(huì)論文集[C];2011年
4 李澤慧;沈俊山;朱金霞;;一類風(fēng)險(xiǎn)模型的破產(chǎn)概率估計(jì)[A];2003中國現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第十一屆學(xué)術(shù)年會(huì)論文集(下)[C];2003年
5 佘志芳;耿顯民;;一類帶投資的風(fēng)險(xiǎn)模型破產(chǎn)概率研究[A];中國現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2005年
6 孟生旺;;保險(xiǎn)公司的償付能力監(jiān)管模型[A];2003中國現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第十一屆學(xué)術(shù)年會(huì)論文集(上)[C];2003年
7 劉俊峰;夏樂天;;保費(fèi)隨機(jī)的帶干擾離散時(shí)間風(fēng)險(xiǎn)模型的破產(chǎn)概率[A];江蘇省現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)第十次學(xué)術(shù)年會(huì)論文集[C];2006年
8 羅旋;劉文芬;;固定利率下離散風(fēng)險(xiǎn)模型中破產(chǎn)概率的若干結(jié)果[A];第二十四屆中國控制會(huì)議論文集(下冊(cè))[C];2005年
9 劉兆君;;保險(xiǎn)公司經(jīng)營風(fēng)險(xiǎn)的模糊度量[A];第八屆中國不確定系統(tǒng)年會(huì)論文集[C];2010年
10 朱文革;;全球金融危機(jī)對(duì)保險(xiǎn)公司財(cái)務(wù)狀況和償付能力監(jiān)管的影響研究[A];中國保險(xiǎn)學(xué)會(huì)首屆學(xué)術(shù)年會(huì)論文集[C];2009年
相關(guān)重要報(bào)紙文章 前10條
1 任志強(qiáng);地產(chǎn)公司破產(chǎn)概率很低[N];中國房地產(chǎn)報(bào);2009年
2 陳婉婉邋通訊員 馬健;全國金融數(shù)學(xué)研討會(huì)在皖舉行[N];安徽日?qǐng)?bào);2007年
3 陳文浩;如何確定企業(yè)負(fù)債經(jīng)營的“度”[N];證券日?qǐng)?bào);2004年
4 高明華;債權(quán)人也是公司治理重要參與者[N];上海證券報(bào);2007年
5 ;應(yīng)該改變ST帽子的“戴法”[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2007年
6 林純潔;如果債券沒了擔(dān)保[N];第一財(cái)經(jīng)日?qǐng)?bào);2008年
7 滬訊;專家 大銀行沒理由不參加[N];江蘇經(jīng)濟(jì)報(bào);2008年
8 澳新銀行大中華區(qū)經(jīng)濟(jì)研究總監(jiān) 劉利剛;為中小企業(yè)“輸血”[N];浙江日?qǐng)?bào);2011年
9 李向陽;建立和維持企業(yè)信譽(yù)的障礙[N];中國信息報(bào);2003年
10 本報(bào)記者 丁磊;155元還是上億:黃光裕民事訴訟索賠額爭(zhēng)議[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2011年
相關(guān)博士學(xué)位論文 前10條
1 陳洋;二維風(fēng)險(xiǎn)模型的破產(chǎn)概率的漸近性分析[D];蘇州大學(xué);2013年
2 趙武;聚合風(fēng)險(xiǎn)模型下保險(xiǎn)公司的投資策略和破產(chǎn)概率的研究[D];電子科技大學(xué);2009年
3 郭風(fēng)龍;考慮投資收益和相依結(jié)構(gòu)的保險(xiǎn)風(fēng)險(xiǎn)模型破產(chǎn)概率研究[D];電子科技大學(xué);2012年
4 高慶武;若干非標(biāo)準(zhǔn)風(fēng)險(xiǎn)模型的破產(chǎn)概率的漸近性態(tài)[D];蘇州大學(xué);2010年
5 董英華;隨機(jī)利率下風(fēng)險(xiǎn)模型破產(chǎn)概率的研究[D];蘇州大學(xué);2012年
6 白曉東;重尾相依風(fēng)險(xiǎn)模型破產(chǎn)概率的漸近性分析[D];大連理工大學(xué);2012年
7 崔召磊;隨機(jī)游動(dòng)和Lévy過程的超出與不足的漸近性及其應(yīng)用[D];蘇州大學(xué);2010年
8 肖臨;帶壁生滅過程及隨機(jī)環(huán)境中復(fù)合二項(xiàng)風(fēng)險(xiǎn)模型[D];湖南師范大學(xué);2012年
9 李津竹;相依更新風(fēng)險(xiǎn)模型中的漸近尾行為[D];南開大學(xué);2010年
10 趙斯泓;依生滅過程索賠風(fēng)險(xiǎn)模型[D];上海大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 張未未;三種風(fēng)險(xiǎn)模型下破產(chǎn)概率的研究[D];西北工業(yè)大學(xué);2005年
2 李鳳玲;帶指數(shù)Lévy過程的更新風(fēng)險(xiǎn)模型中的有限時(shí)間破產(chǎn)概率[D];暨南大學(xué);2010年
3 張蓓;一類連續(xù)時(shí)間風(fēng)險(xiǎn)模型的破產(chǎn)概率的估計(jì)與逼近[D];河北工業(yè)大學(xué);2004年
4 張馨方;變破產(chǎn)下限風(fēng)險(xiǎn)模型破產(chǎn)概率的探討[D];河南理工大學(xué);2011年
5 董迎輝;相關(guān)負(fù)風(fēng)險(xiǎn)和模型的破產(chǎn)概率[D];蘇州大學(xué);2004年
6 楊恒;不同因素下風(fēng)險(xiǎn)模型的破產(chǎn)概率及最憂控制的研究[D];蘭州理工大學(xué);2010年
7 曹龍;重尾分布下風(fēng)險(xiǎn)模型中的破產(chǎn)概率[D];安徽大學(xué);2001年
8 李俊剛;一類連續(xù)時(shí)間風(fēng)險(xiǎn)模型的聯(lián)合分布及破產(chǎn)概率[D];河北工業(yè)大學(xué);2003年
9 徐然然;帶常利息率的相依風(fēng)險(xiǎn)模型的破產(chǎn)概率[D];曲阜師范大學(xué);2010年
10 沈愛婷;帶干擾的多險(xiǎn)種風(fēng)險(xiǎn)模型的破產(chǎn)概率[D];合肥工業(yè)大學(xué);2005年
,本文編號(hào):2319297
本文鏈接:http://www.sikaile.net/jingjilunwen/bxjjlw/2319297.html