相依風(fēng)險及平衡損失函數(shù)下的信度理論
[Abstract]:In insurance practice, an important task is to determine sufficient premiums to cope with risks. So far, there have been many methods to determine the insurance price. Among them, the reliability determination method is a widely accepted and important technology. It predicts the future claims of the risk set through the past claim data of the risk set. Now in the early twentieth century, until the 1960s, Buhlmann model has laid the foundation of modern reliability theory. It solves the problem of no distribution by using the least square method to determine the premium of reliability, and expresses it as the weighted average of individual average and collective average. However, in practice, the assumption of risk independence in Biihlmann model is not necessarily satisfied. Risk-related situations often occur. Biihlmann model with risk-related structure is gradually taken seriously.
In classical decision theory, the loss function only focuses on the accuracy of estimation, but the fitness is also an important criterion. Zellner first introduced the balance loss function which reflects the accuracy and fitness in the general linear model, and the reliability determination method under the balance loss function has also been studied in recent years. The reliability model under premium principle is also studied continuously, mainly because the weighted loss function can reduce the negative security load in pure premium principle, such as Esscher premium principle, adjusting premium principle and so on.
This paper mainly studies two parts: one is the study of the reliability model which is different from the classical reliability model in risk structure; the other is the study of the reliability model which is different from the loss function in the classical reliability model.
The first part of this paper is studied in the second chapter. The risk-dependent and time-dependent reliability model is extended to the risk-dependent and time-dependent reliability model. The relationship between orthogonal projection and reliability estimation and the reliability estimation formula expressed by orthogonal projection are given. Homogeneous and inhomogeneous reliability estimates of risk premiums in time-dependent Buhlmann and Buhlmann-Straub models are given. Finally, reliability premiums with common effect risk structures and risk-related structures are deduced.
In the second part, we study the reliability premium problem when the quadratic loss function in the classical reliability model is modified into the balanced loss function and the weighted balanced loss function. The general reliability premium expression, homogeneous and inhomogeneous reliability premiums with common effect risk structure are studied emphatically, and the estimation of relevant parameters in the reliability formula is given. Finally, the reliability premium of exponential premium principle under the equilibrium loss function is discussed.
In Chapter 4, firstly, the linear regression reliability premium with risk-dependent structure under the balanced loss function is given; secondly, the reliability premium when the target estimator in the balanced loss function takes a special estimate is obtained; finally, the regression confidence under two special risk structures, i.e. risk equivalence correlation and common risk, is discussed. Degree model.
In Chapter 5, considering that the loss function is often responsible for the loss of security load, the quadratic loss function in the classical reliability model is replaced by the weighted balanced quadratic loss function. In this paper, we discuss the consistency of the reliability estimates. We study the premium problem under the general equilibrium loss function L_, _, _0 (theta, delta) = __ (delta 0, delta) + (1-_) Rho (theta, delta). Finally, we obtain the reliability premium under the equilibrium entropy loss function and the equilibrium Linex loss function by Taylor expansion.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:F840.3;O212.1
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 康會光;一類單邊截斷型分布族參數(shù)的經(jīng)驗Bayes估計[J];安陽師范學(xué)院學(xué)報;2001年02期
2 康會光,師義民;LINEX損失下Pareto分布族參數(shù)的經(jīng)驗Bayes估計[J];純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué);2001年02期
3 康會光;師義民;柴建;黃藏紅;;Linex損失及PA樣本下單邊截斷型分布族參數(shù)函數(shù)的EB估計[J];純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué);2008年02期
4 師義民;雙邊截斷型分布族參數(shù)的經(jīng)驗Bayes估計[J];高校應(yīng)用數(shù)學(xué)學(xué)報A輯(中文版);2000年04期
5 騰葉;吳黎軍;;指數(shù)保費原理下的雙相依信度保費[J];高校應(yīng)用數(shù)學(xué)學(xué)報A輯;2013年04期
6 謝遠(yuǎn)濤;楊娟;;基于操作時間和廣義線性混合模型的準(zhǔn)備金評估技術(shù)研究[J];保險研究;2014年03期
7 李新鵬;努爾古麗·艾力;吳黎軍;;LINEX損失函數(shù)下具有時間變化效應(yīng)的信度模型[J];重慶理工大學(xué)學(xué)報(自然科學(xué));2014年06期
8 王劍;劉次華;彭家龍;;平衡損失下正態(tài)總體均值的序貫估計[J];湖北工業(yè)大學(xué)學(xué)報;2007年01期
9 溫利民;吳賢毅;;指數(shù)保費原理下的經(jīng)驗厘定[J];中國科學(xué):數(shù)學(xué);2011年10期
10 黃藏紅;王華敏;;Linex損失及NA樣本下單邊截斷型分布族參數(shù)函數(shù)的EB估計[J];洛陽師范學(xué)院學(xué)報;2008年05期
相關(guān)博士學(xué)位論文 前5條
1 劉湘蓉;統(tǒng)計決策觀點下線性模型參數(shù)估計優(yōu)良性研究[D];華東師范大學(xué);2006年
2 溫利民;風(fēng)險保費的信度估計及其統(tǒng)計推斷[D];華東師范大學(xué);2010年
3 張尚立;不等式約束線性模型的可容許性估計理論[D];北京交通大學(xué);2012年
4 楊磊;貝葉斯非參數(shù)統(tǒng)計中的先驗的估計[D];華東師范大學(xué);2014年
5 彭秀云;基于廣義逐次截尾數(shù)據(jù)的逆Weibull分布可靠性推斷[D];內(nèi)蒙古工業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 雷靜;平衡損失函數(shù)下信度保費的相合性研究[D];吉林大學(xué);2011年
2 康會光;經(jīng)驗Bayes統(tǒng)計分析及其應(yīng)用的研究[D];西北工業(yè)大學(xué);2001年
3 許勇;NA樣本情形下經(jīng)驗Bayes統(tǒng)計推斷及其應(yīng)用的研究[D];西北工業(yè)大學(xué);2002年
4 寧建輝;分布函數(shù)的優(yōu)良估計問題[D];華中師范大學(xué);2005年
5 潘茂林;經(jīng)驗費率的相合性[D];華東師范大學(xué);2007年
6 李樹祥;經(jīng)驗Bayes估計中的若干問題[D];西北大學(xué);2007年
7 洪樂;非對稱損失函數(shù)下的信度保費[D];吉林大學(xué);2008年
8 王學(xué)敏;Linex損失下Burr分布參數(shù)的Bayes估計[D];華中師范大學(xué);2008年
9 凌光;平衡損失下線性模型的參數(shù)估計[D];華中科技大學(xué);2007年
10 林霞;廣義加權(quán)平衡損失函數(shù)下的穩(wěn)健Bayes保費[D];華東師范大學(xué);2009年
,本文編號:2247110
本文鏈接:http://www.sikaile.net/jingjilunwen/bxjjlw/2247110.html