天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于改進(jìn)KNN算法的二手房評(píng)估

發(fā)布時(shí)間:2018-07-18 11:03
【摘要】:傳統(tǒng)的房屋評(píng)估方法,比如收益法、成本法、市場比較法等方法多存在成本高、效率低、精度差等各項(xiàng)問題。本論文基于對(duì)KNN算法和二手房評(píng)估的研究,分析了 KNN算法的特點(diǎn)以及將算法用于二手房評(píng)估上的可行性。二手房信息中的關(guān)鍵數(shù)據(jù)容易數(shù)值化和標(biāo)準(zhǔn)化,使用KNN算法在模型上可行;經(jīng)過篩選后的樣本集規(guī)?煽,KNN算法在時(shí)間復(fù)雜度上優(yōu)化空間也很大,在計(jì)算效率上可行。對(duì)于二手房信息這類結(jié)構(gòu)較清晰的數(shù)據(jù),KNN算法較易于實(shí)現(xiàn),成本較低,在經(jīng)濟(jì)上可行。本論文對(duì)數(shù)據(jù)挖掘中的分類技術(shù)和回歸技術(shù)進(jìn)行分析,之后選取KNN算法為對(duì)二手房進(jìn)行評(píng)估的核心技術(shù),實(shí)現(xiàn)了一個(gè)B/S(Browser/Server,瀏覽器/服務(wù)器模式)估價(jià)應(yīng)用,給予有二手房評(píng)估需求的目標(biāo)用戶一種快速獲得評(píng)估結(jié)果的方式。經(jīng)研究分析,經(jīng)典KNN算法具有精度較高、對(duì)樣本集中的噪聲不敏感等優(yōu)點(diǎn),也有k值難以選取、時(shí)間復(fù)雜度高、受樣本平衡度的影響大等缺點(diǎn)。本著揚(yáng)長避短的思想,對(duì)于算法優(yōu)點(diǎn),使用結(jié)果集加權(quán)的方式進(jìn)一步提高算法精度,使用去重和標(biāo)準(zhǔn)化等方式減少噪聲;對(duì)于算法缺點(diǎn),使用多次檢驗(yàn)法選定k值,使用TopK算法以及多線程并發(fā)的方式降低時(shí)間復(fù)雜度,使用數(shù)據(jù)采集階段就對(duì)數(shù)據(jù)進(jìn)行分類的方式穩(wěn)定樣本平衡度。為了對(duì)改進(jìn)的KNN算法進(jìn)行實(shí)用性驗(yàn)證,利用該算法對(duì)哈爾濱市的部分二手房數(shù)據(jù)進(jìn)行分析,通過對(duì)數(shù)據(jù)的預(yù)處理,基于改進(jìn)KNN算法的實(shí)現(xiàn)等步驟,最終給出二手房的估價(jià)結(jié)果。對(duì)于二手房業(yè)主及中介商等目標(biāo)用戶,使用改進(jìn)KNN算法進(jìn)行二手房評(píng)估的B/S應(yīng)用對(duì)比傳統(tǒng)的二手房評(píng)估方式,具有計(jì)算速度快、交互界面友好易用的優(yōu)勢(shì),很好的滿足了目標(biāo)用戶的需求。
[Abstract]:Traditional methods of house evaluation, such as income method, cost method and market comparison method, have many problems, such as high cost, low efficiency, poor precision and so on. Based on the research of KNN algorithm and second-hand house evaluation, this paper analyzes the characteristics of KNN algorithm and the feasibility of applying the algorithm to second-hand housing evaluation. The key data in second-hand housing information is easy to be numerical and standardized, and the KNN algorithm is feasible in the model, and the filtered sample set size controllable KNN algorithm also has a large space in time complexity optimization, and is feasible in computing efficiency. The KNN algorithm is easy to realize for the second-hand housing information, which has a clear structure, and the cost is lower, so it is economically feasible. This paper analyzes the classification technology and regression technology in data mining, then selects KNN algorithm as the core technology to evaluate second-hand housing, and realizes a B / S (browser / Server mode) evaluation application. Give target users with second-hand housing assessment needs a quick way to get results. Through research and analysis, it is found that the classical KNN algorithm has the advantages of high precision, insensitivity to the noise in the sample set, and the disadvantages of hard to select k value, high time complexity and large influence of sample balance. For the advantages of the algorithm, the method of weighted result set is used to further improve the accuracy of the algorithm, and the method of de-duplication and standardization is used to reduce the noise, and for the shortcomings of the algorithm, the value of k is selected by the method of multiple tests. The time complexity is reduced by using TopK algorithm and multi-thread concurrency, and the sample balance is stabilized by classifying the data in the data acquisition stage. In order to verify the practicability of the improved KNN algorithm, this algorithm is used to analyze some second-hand housing data in Harbin. Through the preprocessing of the data and the realization of the improved KNN algorithm, the evaluation results of the second-hand house are given. For the target users such as second-hand house owners and intermediaries, the B / S application of the improved KNN algorithm for second-hand housing evaluation has the advantages of faster calculation speed and friendly interface than the traditional second-hand housing evaluation method. Meet the needs of the target users well.
【學(xué)位授予單位】:哈爾濱商業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F299.23;TP311.13

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曲衛(wèi)東;於洋;;基于蒙特卡洛模擬假設(shè)開發(fā)法對(duì)土地出讓底價(jià)評(píng)估的改進(jìn)[J];中國土地科學(xué);2014年11期

2 王麗英;;房地產(chǎn)估價(jià)主觀風(fēng)險(xiǎn)分析[J];中國集體經(jīng)濟(jì);2012年13期

3 張楠;苗奪謙;岳曉冬;;區(qū)間值信息系統(tǒng)的知識(shí)約簡[J];計(jì)算機(jī)研究與發(fā)展;2010年08期

4 張孝飛;黃河燕;;一種采用聚類技術(shù)改進(jìn)的KNN文本分類方法[J];模式識(shí)別與人工智能;2009年06期

5 項(xiàng)勇;楊玉靜;舒小蘭;;基于特征價(jià)格的城市交通對(duì)房價(jià)影響分析[J];技術(shù)經(jīng)濟(jì)與管理研究;2009年06期

6 朱明旱;羅大庸;易勵(lì)群;;一種序列的加權(quán)kNN分類方法[J];電子學(xué)報(bào);2009年11期

7 蘇映雪;付耀文;;基于KNN算法的組合式非搜索特征選擇算法[J];計(jì)算機(jī)工程;2007年18期

8 王曉曄,王正歐;K-最近鄰分類技術(shù)的改進(jìn)算法[J];電子與信息學(xué)報(bào);2005年03期

9 陳莉,焦李成;Internet/Web數(shù)據(jù)挖掘研究現(xiàn)狀及最新進(jìn)展[J];西安電子科技大學(xué)學(xué)報(bào);2001年01期

10 陳莉;數(shù)據(jù)庫中的知識(shí)發(fā)現(xiàn)[J];西北大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年01期

相關(guān)會(huì)議論文 前1條

1 鄭思齊;劉洪玉;;市場比較法中因素調(diào)整過程的改進(jìn)——?dú)w一法與Hedonic模型法[A];2003中國房地產(chǎn)估價(jià)學(xué)術(shù)研討會(huì)論文集[C];2003年

相關(guān)碩士學(xué)位論文 前3條

1 張靜;基于主成分分析的房地產(chǎn)估價(jià)方法研究[D];河北工業(yè)大學(xué);2007年

2 張威;灰色理論和模糊集在房地產(chǎn)估價(jià)中的綜合應(yīng)用研究[D];合肥工業(yè)大學(xué);2006年

3 沈良峰;房地產(chǎn)估價(jià)基本方法參數(shù)的改進(jìn)研究[D];中南大學(xué);2003年

,

本文編號(hào):2131706

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jingjifazhanlunwen/2131706.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0a374***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com