網(wǎng)絡閱卷及其關鍵技術(shù)研究
[Abstract]:With the development of computer information technology, the application scale of network information technology in examination is more and more large. Examination is an important link in teaching. With the increase of the number of examinations and the expansion of examination scale, the traditional examination content limited multiple choice questions and questions gradually evolved into single topic selection, multi-topic selection, objective subjective selection of questions, subjective test questions. Divergent thinking questions and other questions as one of the diversified development situation, the traditional marking of the error of the paper evaluation, the statistical analysis of scores after marking, the transport and storage of test papers can not achieve accuracy. The network marking system is a new type of marking method which aims at improving the marking speed, reducing the error of the subjective questions marking, facilitating the statistical analysis of the scores and the management and archiving of the examination papers, and taking the principle of fairness and fairness in the examination as the purpose. In this paper, the design mode of "Internet", digital image processing technology and big data analysis technology are adopted, and the complicated marking work and the complicated data statistical analysis are automatically completed by the system "scan and review". The system is mainly divided into two parts: objective question marking and subjective question marking. After image scanning, the system automatically recognizes the basic information of the examinee, and the objective questions are automatically graded by the system. The subjective questions are distributed randomly to the computer terminal by the system, and the network marking is carried out by the marking teachers. The multiple evaluation mechanism is injected into the marking process to ensure the fairness of the marking, and the system automatically carries out the results statistics and verification. The combination of computer network technology and teachers' marking experience not only reduces the error of marking but also improves the efficiency of marking. The main work of this paper is as follows: (1) on the basis of reading related literature, this paper analyzes and compares the domestic and foreign research background and current situation, and analyzes the advantages and disadvantages of several domestic systems. This paper expounds the importance of developing a network marking system with high efficiency and strong function. According to the real needs of users, it combines the educational technology theory of network application in education. Analysis and design of the whole system development scheme; (2) analysis of the image preprocessing technology, aiming at several commonly used image preprocessing methods, find out the image preprocessing technology suitable for this system. The electronic scan answer card is preprocessed and the objective answer recognition is realized. Finally, the convolution neural network is applied to the field of handwritten answer and test number recognition, which realizes the automatic recognition of the objective answer and handwritten answer and the test number. The accuracy and efficiency of the system in recognition are improved effectively. (3) at last, the system adopts the B / S development mode, uses SSH framework Java technology and MySQL database, and finally develops and realizes the whole marking system.
【學位授予單位】:石家莊鐵道大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:G434
【參考文獻】
相關期刊論文 前10條
1 曾雪瓊;黎杰;;基于卷積神經(jīng)網(wǎng)絡的時頻圖像識別研究[J];機械與電子;2016年05期
2 胡青;劉本永;;基于卷積神經(jīng)網(wǎng)絡分類的說話人識別算法[J];信息網(wǎng)絡安全;2016年04期
3 陽哲;;卷積神經(jīng)網(wǎng)絡在印章編號識別中的應用[J];現(xiàn)代計算機(專業(yè)版);2016年04期
4 宋波;王啟春;;卷積神經(jīng)網(wǎng)絡在路牌識別中的應用[J];公路交通技術(shù);2015年05期
5 王振;高茂庭;;基于卷積神經(jīng)網(wǎng)絡的圖像識別算法設計與實現(xiàn)[J];現(xiàn)代計算機(專業(yè)版);2015年20期
6 蔡娟;蔡堅勇;廖曉東;黃海濤;丁僑俊;;基于卷積神經(jīng)網(wǎng)絡的手勢識別初探[J];計算機系統(tǒng)應用;2015年04期
7 余永維;殷國富;殷鷹;杜柳青;;基于深度學習網(wǎng)絡的射線圖像缺陷識別方法[J];儀器儀表學報;2014年09期
8 鄭胤;陳權(quán)崎;章毓晉;;深度學習及其在目標和行為識別中的新進展[J];中國圖象圖形學報;2014年02期
9 徐虹;高偉;;美國大學考試形式及其對我國考試評價改革的啟示[J];教育探索;2013年07期
10 徐姍姍;劉應安;徐f;;基于卷積神經(jīng)網(wǎng)絡的木材缺陷識別[J];山東大學學報(工學版);2013年02期
相關博士學位論文 前1條
1 鄭澤忠;基于高分辨率航空影像高速公路汽車目標檢測算法研究[D];西南交通大學;2010年
相關碩士學位論文 前8條
1 常歡;基于卷積神經(jīng)網(wǎng)絡的孤立手寫體漢字識別研究[D];安徽大學;2015年
2 李敏;基于BS模式的網(wǎng)絡閱卷系統(tǒng)的設計與實現(xiàn)[D];吉林大學;2014年
3 張愛娟;基于結(jié)構(gòu)特征點的字符分割技術(shù)的研究[D];西安電子科技大學;2014年
4 陳寅;植物葉形狀與葉脈結(jié)構(gòu)的自動分類研究[D];浙江理工大學;2013年
5 謝琪林;網(wǎng)上閱卷系統(tǒng)設計與實現(xiàn)[D];電子科技大學;2011年
6 張智軼;基于圖像處理的燃燒物識別技術(shù)的研究[D];東華大學;2011年
7 孫偉;基于FPGA的圖像分割提取系統(tǒng)研究[D];南京航空航天大學;2010年
8 王添翼;基于卷積網(wǎng)絡的三維模型特征提取[D];吉林大學;2006年
,本文編號:2265253
本文鏈接:http://www.sikaile.net/jiaoyulunwen/jiaoyutizhilunwen/2265253.html