深井富水砂巖凍結(jié)解凍后的滲流應(yīng)力耦合試驗(yàn)研究
[Abstract]:Because there is little concern about the deterioration of deep soft rock by freezing and thawing, the water conductivity of rock mass in the annular space of freezing pipe increases after thawing, and a series of flooding accidents occur. In this paper, the mechanical properties of frozen intact sandstone, frozen fractured sandstone, the development of pore structure after freeze-thaw deterioration of sandstone and the coupling characteristics of seepage and stress are studied by combining experimental and theoretical methods. Uniaxial and triaxial compression tests of frozen intact sandstone and fractured sandstone were carried out at temperatures of - 5 C, - 10 C and - 15 C. The results show that the frozen strength of red sandstone, medium sandstone and fine sandstone varies with the temperature range of - 5 C ~ - 15 C. The freezing strength of the three sandstones increases linearly with the increase of confining pressure, which conforms to the Mohr-Coulomb criterion. The temperature decreases from - 5 C to - 15 C, and the internal friction angles of frozen red sandstones, frozen medium sandstones and frozen fine sandstones increase by 9, respectively. The cohesion increases by 15.03%, 18.69% and 15.39% respectively. The influence of temperature on the cohesion of frozen sandstone is greater than that on the internal friction angle. The strength of frozen fractured red sandstone increases linearly with the increase of confining pressure. The strength of frozen fractured red sandstone decreases gradually with the increase of fracture dip angle. The failure mode of frozen horizontal fissured red red sandstone is tension failure under uniaxial compression, tension and shear composite mode under triaxial compression, and frozen fissured red red sandstone with inclination of 15 to 45 degrees under uniaxial and triaxial compression, the failure mode is ice yield fracture and shear slip along rock-ice interface. The freeze-thaw test and seepage-stress coupling test of saturated medium-sized sandstone with 450 m depth underground in Shilawusu Coal Mine were carried out under different stress conditions. Based on CT images, the three-dimensional pore structure of medium-sized sandstone before and after freeze-thaw was reconstructed, and the influence of freeze-thaw on CT-scale pore development was analyzed. The pore radius mainly distributes in the range of 10-80 micron, accounting for more than 80% of all the pore ratios. Freezing and thawing will lead to the obvious development of small pores with a radius of 10-60 micron, and the proportion of medium pores with a radius of 60-200 micron decreases obviously. The proportion of large pores with a radius of more than 200 micron increases slightly. When the osmotic pressure is lower than this value, the permeability of medium sandstone increases with the increase of osmotic pressure. When the osmotic pressure is higher than this value, the permeability of medium sandstone remains unchanged or even decreases. In the process of strain loading, when the confining pressure is 24 MPa, the permeability of all samples of medium sandstone remains unchanged or decreases with the increase of axial strain; when the confining pressure is 6 MPa, the permeability of all samples is in the initial stage, decreases with the increase of volumetric strain, and increases with the decrease of volumetric strain when entering the dilatancy stage; the confining pressure is between 12 and 18 MPa. On the basis of statistical damage constitutive theory and considering the effect of stiffness degradation on Biot coefficient during damage process, a statistical damage constitutive model considering seepage effect is constructed and different stress strips are adopted. The full stress-strain curves of frozen-thawed medium-sized sandstone under seepage conditions were validated. The model can well reflect the mechanical properties of medium-sized sandstone under seepage conditions.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張玉軍;熱—水—應(yīng)力耦合彈塑性二維有限元程序的研制[J];焦作大學(xué)學(xué)報(bào);2005年01期
2 張玉軍;;不同場(chǎng)熱—水—應(yīng)力耦合過程二維有限元分析[J];地下空間與工程學(xué)報(bào);2007年03期
3 賀玉龍;楊立中;;溫度—滲流—應(yīng)力耦合作用分類[J];四川地質(zhì)學(xué)報(bào);2008年03期
4 趙士文;盧廷浩;劉仲秋;;基于滲流-應(yīng)力耦合的基坑變形與穩(wěn)定分析[J];江蘇建筑;2010年06期
5 張玉軍;;模擬凍-融過程的熱-水-應(yīng)力耦合模型及數(shù)值分析[J];固體力學(xué)學(xué)報(bào);2009年04期
6 李燕,楊林德;巖體滲流應(yīng)力耦合作用研究綜述[J];紅水河;2005年02期
7 楊林德;李燕;李鵬;;各向異性巖體滲流應(yīng)力耦合模型[J];地下空間與工程學(xué)報(bào);2006年05期
8 何翔;馮夏庭;張東曉;;巖體滲流 應(yīng)力耦合有限元計(jì)算的精細(xì)積分方法[J];巖石力學(xué)與工程學(xué)報(bào);2006年10期
9 張玉軍;;尤卡山坑道規(guī)模試驗(yàn)熱-氣-應(yīng)力耦合過程的離散元模擬[J];巖石力學(xué)與工程學(xué)報(bào);2007年S2期
10 左建平;周宏偉;謝和平;鞠楊;;溫度和應(yīng)力耦合作用下砂巖破壞的細(xì)觀試驗(yàn)研究[J];巖土力學(xué);2008年06期
相關(guān)會(huì)議論文 前10條
1 劉成學(xué);楊林德;李鵬;;滲流-應(yīng)力耦合問題的多參數(shù)優(yōu)化反演研究[A];和諧地球上的水工巖石力學(xué)——第三屆全國水工巖石力學(xué)學(xué)術(shù)會(huì)議論文集[C];2010年
2 楊天鴻;李連崇;朱萬成;唐春安;李夕兵;劉繼山;;基于數(shù)字圖像技術(shù)巖石溫度滲流應(yīng)力耦合破壞機(jī)制的數(shù)值模擬初探[A];第九屆全國巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2006年
3 王媛;;裂隙發(fā)育方向?qū)r體滲流應(yīng)力耦合的影響[A];巖土力學(xué)的理論與實(shí)踐——第三屆全國青年巖土力學(xué)與工程會(huì)議論文集[C];1998年
4 于冰;陳興華;;巖體裂隙滲流與應(yīng)力耦合關(guān)系的實(shí)驗(yàn)研究[A];第二屆全國青年巖石力學(xué)與工程學(xué)術(shù)研討會(huì)論文集[C];1993年
5 王俊光;梁冰;李平;;滲透動(dòng)水壓力作用下的裂隙巖體滲流與應(yīng)力耦合分析[A];水工滲流研究與應(yīng)用進(jìn)展——第五屆全國水利工程滲流學(xué)術(shù)研討會(huì)論文集[C];2006年
6 劉先珊;林耀生;孔建;;考慮卸荷作用的裂隙巖體滲流應(yīng)力耦合研究[A];第九屆全國巖土力學(xué)數(shù)值分析與解析方法討論會(huì)論文集[C];2007年
7 孫粵琳;沈振中;吳越健;;巖體裂縫擴(kuò)展的滲流-應(yīng)力耦合分析模型[A];2007重大水利水電科技前沿院士論壇暨首屆中國水利博士論壇論文集[C];2007年
8 顧元憲;趙紅兵;陳飚松;亢戰(zhàn);;結(jié)構(gòu)的熱-應(yīng)力耦合優(yōu)化設(shè)計(jì)[A];“力學(xué)2000”學(xué)術(shù)大會(huì)論文集[C];2000年
9 紀(jì)佑軍;劉建軍;薛強(qiáng);;基坑開挖中滲流-應(yīng)力耦合模擬[A];第九屆全國巖土力學(xué)數(shù)值分析與解析方法討論會(huì)論文集[C];2007年
10 劉先珊;;基于DDA的裂隙巖體非飽和滲流應(yīng)力耦合模型研究[A];第一屆中國水利水電巖土力學(xué)與工程學(xué)術(shù)討論會(huì)論文集(上冊(cè))[C];2006年
相關(guān)博士學(xué)位論文 前4條
1 易海洋;地質(zhì)處置封裝系統(tǒng)的滲流—應(yīng)力耦合數(shù)值模擬研究[D];中國礦業(yè)大學(xué)(北京);2016年
2 劉念;深井富水砂巖凍結(jié)解凍后的滲流應(yīng)力耦合試驗(yàn)研究[D];中國礦業(yè)大學(xué)(北京);2017年
3 楊天鴻;巖石破裂過程滲透性質(zhì)及其與應(yīng)力耦合作用研究[D];東北大學(xué);2001年
4 于洪丹;Boom Clay滲流—應(yīng)力耦合長(zhǎng)期力學(xué)特性研究[D];中國科學(xué)院研究生院(武漢巖土力學(xué)研究所);2010年
相關(guān)碩士學(xué)位論文 前9條
1 王朋;化學(xué)-溫度-應(yīng)力耦合作用對(duì)巖石力學(xué)性能的影響[D];上海理工大學(xué);2014年
2 王興宏;裂隙茅口灰?guī)r滲流—應(yīng)力耦合試驗(yàn)研究[D];湖南科技大學(xué);2015年
3 李鵬飛;紅外焦平面探測(cè)器熱—應(yīng)力耦合分析[D];河南科技大學(xué);2014年
4 李鵬;軟巖滲流應(yīng)力耦合分析參數(shù)反演的理論與方法[D];同濟(jì)大學(xué);2008年
5 郭玉龍;滲流與應(yīng)力耦合作用對(duì)邊坡穩(wěn)定性影響的研究[D];武漢理工大學(xué);2005年
6 孫f,
本文編號(hào):2189092
本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/2189092.html