天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 建筑工程論文 >

鋼板剪力墻抗震性能非線性分析

發(fā)布時(shí)間:2018-08-14 08:50
【摘要】:鋼板剪力墻結(jié)構(gòu)由主要承擔(dān)豎向荷載的邊緣框架和主要承擔(dān)水平荷載的內(nèi)嵌鋼板組成,它充分利用了框架結(jié)構(gòu)和內(nèi)嵌鋼板的優(yōu)點(diǎn),能夠使兩者協(xié)同工作。鋼板剪力墻結(jié)構(gòu)因彈性剛度大、抗震性能優(yōu)良、結(jié)構(gòu)自重小、施工速度快等優(yōu)點(diǎn),在國(guó)內(nèi)外得到了廣泛的研究和應(yīng)用。本文基于非線性有限元軟件ABAQUS采用組合本構(gòu)關(guān)系對(duì)鋼板剪力墻抗震性能進(jìn)行了非線性分析,通過(guò)參數(shù)化分析來(lái)確定各個(gè)參數(shù)對(duì)鋼板剪力墻抗震性能的影響,為鋼板剪力墻的實(shí)際應(yīng)用提供一定的參考。本文的主要研究?jī)?nèi)容和結(jié)論如下:(1)對(duì)鋼板剪力墻進(jìn)行了受力分析,得出了內(nèi)嵌鋼板極限承載力的理論計(jì)算公式及邊緣框架柱的最小剛度要求。(2)本文基于已有的鋼板剪力墻擬靜力試驗(yàn),采用有限元軟件對(duì)試驗(yàn)試件進(jìn)行了模擬,得到了模型的骨架曲線、滯回曲線、破壞形態(tài),對(duì)模型的承載力性能、延性性能、滯回性能、破壞形態(tài)等進(jìn)行了研究。對(duì)比分析表明,數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果吻合的很好,為后續(xù)進(jìn)行更深入的參數(shù)化分析奠定了基礎(chǔ)。(3)對(duì)鋼板剪力墻進(jìn)行了單調(diào)加載分析,設(shè)計(jì)了三個(gè)參數(shù)(開(kāi)洞率、高厚比、軸壓比)進(jìn)行參數(shù)化分析。分別得到了荷載-位移曲線、面外變形圖、應(yīng)力云圖,分析了各個(gè)系列試件的承載能力性能,變形和應(yīng)力發(fā)展規(guī)律。研究表明:開(kāi)洞率或高厚比越大,結(jié)構(gòu)的屈服荷載和極限承載力越小,內(nèi)嵌鋼板應(yīng)力值越大,延性越好,而軸壓比越大,結(jié)構(gòu)的屈服荷載、極限承載力、延性越小;三個(gè)參數(shù)下內(nèi)嵌鋼板面均正反向交替出現(xiàn)帶狀屈曲波;實(shí)際工程中建議開(kāi)洞率在30%以下為宜,高厚比在300到400之間為宜。(4)對(duì)鋼板剪力墻進(jìn)行了三參數(shù)下循環(huán)加載分析。對(duì)比分析了各個(gè)參數(shù)下結(jié)構(gòu)的滯回曲線、骨架曲線、剛度退化、承載力退化、耗能性能來(lái)揭示鋼板剪力墻的抗震性能。研究表明:開(kāi)洞率、高厚比、軸壓比越大,零剛度現(xiàn)象越明顯,滯回環(huán)捏縮越嚴(yán)重;開(kāi)洞使屈服位移(極限位移)提高的幅度大于相應(yīng)承載力降低的幅度;隨著內(nèi)嵌鋼板厚度的增加,屈服荷載(極限荷載)提高的幅度要大于相應(yīng)位移降低的幅度;三參數(shù)下各個(gè)試件均具有穩(wěn)定的承載力性能和良好的延性性能,不會(huì)發(fā)生因承載力驟然降低的脆性破壞;試件最終破壞時(shí),不同開(kāi)洞率的試件耗散的能量相差不多,但開(kāi)洞率越大,能量耗散效率越高;高厚比越大,耗散的能量越多,但能量耗散效率變低;軸壓比增大會(huì)使試件耗散的能量大大減少,能量耗散的效率也會(huì)降低。
[Abstract]:The steel plate shear wall structure is composed of the edge frame which mainly bears the vertical load and the embedded steel plate which mainly bears the horizontal load. It makes full use of the advantages of the frame structure and the embedded steel plate and enables the two to work together. The steel plate shear wall structure has been widely studied and applied at home and abroad because of its advantages of large elastic stiffness, good seismic performance, low deadweight and fast construction speed. Based on the nonlinear finite element software ABAQUS, a nonlinear analysis of the seismic behavior of steel plate shear wall is carried out by using the combined constitutive relation, and the influence of each parameter on the seismic performance of the steel plate shear wall is determined by parameterized analysis. It provides a certain reference for the practical application of steel plate shear wall. The main contents and conclusions of this paper are as follows: (1) the stress analysis of steel plate shear wall is carried out. The theoretical calculation formula of ultimate bearing capacity of embedded steel plate and the minimum stiffness requirement of edge frame column are obtained. (2) based on the pseudo-static test of steel plate shear wall, the finite element software is used to simulate the test specimen. The skeleton curve, hysteretic curve and failure form of the model were obtained. The bearing capacity, ductility, hysteretic property and failure morphology of the model were studied. The comparative analysis shows that the numerical simulation results are in good agreement with the experimental results, which lays a foundation for further parameterized analysis. (3) the monotonic loading analysis of steel plate shear wall is carried out, and three parameters (opening ratio, ratio of height to thickness) are designed. The axial compression ratio) is used for parametric analysis. The load-displacement curve, out-of-plane deformation diagram and stress cloud diagram are obtained, respectively. The load-carrying capacity, deformation and stress development of each series of specimens are analyzed. The results show that the larger the opening ratio or the ratio of height to thickness, the smaller the yield load and ultimate bearing capacity of the structure, the greater the stress value of embedded steel plate, the better the ductility, but the greater the axial compression ratio, the smaller the yield load, ultimate bearing capacity and ductility of the structure. The strip buckling wave appears alternately in the front and backward direction of the inlay steel plate surface under three parameters, and it is suggested that the opening rate be less than 30% and the ratio of height to thickness be between 300 and 400 in practical engineering. (4) the cyclic loading analysis of steel plate shear wall with three parameters is carried out. The hysteretic curve, skeleton curve, stiffness degradation, bearing capacity degradation and energy dissipation performance of the structure under various parameters are compared and analyzed to reveal the seismic behavior of steel plate shear wall. The results show that the greater the ratio of hole opening, the higher the ratio of thickness to thickness, the greater the axial compression ratio, the more obvious the phenomenon of zero stiffness and the more serious the pinch of hysteresis loop, and the greater the yield displacement (ultimate displacement) is increased than the extent of the corresponding reduction of bearing capacity. With the increase of the thickness of embedded steel plate, the yield load (ultimate load) increases more than the corresponding displacement, and each specimen has stable bearing capacity and good ductility under three parameters. Brittle failure due to sudden reduction of bearing capacity will not occur. When the specimen is finally destroyed, the energy dissipation of specimens with different opening rates is not much, but the larger the opening rate, the higher the energy dissipation efficiency, and the greater the ratio of high to thickness, the more energy is dissipated. However, the energy dissipation efficiency is lower, and the energy dissipation and energy dissipation efficiency will be greatly reduced when the axial compression ratio increases.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU398.2;TU352.11

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 孫軍浩;趙秋紅;;鋼板剪力墻的工程應(yīng)用[J];建筑結(jié)構(gòu);2015年16期

2 王來(lái);邱婧;馬洋;;基于組合樓板影響的空間鋼框架連續(xù)倒塌分析[J];山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期

3 丁陽(yáng);李浩;師燕超;李忠獻(xiàn);;基于子結(jié)構(gòu)的鋼框架結(jié)構(gòu)抗連續(xù)倒塌性能快速評(píng)估方法[J];建筑結(jié)構(gòu)學(xué)報(bào);2014年06期

4 石永久;王萌;王元清;;循環(huán)荷載作用下結(jié)構(gòu)鋼材本構(gòu)關(guān)系試驗(yàn)研究[J];建筑材料學(xué)報(bào);2012年03期

5 李峰;李慎;郭宏超;王棟;劉建毅;;鋼板剪力墻抗震性能的試驗(yàn)研究[J];西安建筑科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年05期

6 汪大綏;陸道淵;黃良;王建;徐麟;朱俊;;天津津塔結(jié)構(gòu)設(shè)計(jì)[J];建筑結(jié)構(gòu)學(xué)報(bào);2009年S1期

7 郭彥林;董全利;周明;;防屈曲鋼板剪力墻彈性性能及混凝土蓋板約束剛度研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2009年01期

8 曹春華;郝際平;王迎春;李峰;;鋼板剪力墻簡(jiǎn)化模型研究[J];建筑鋼結(jié)構(gòu)進(jìn)展;2009年01期

9 曹春華;郝際平;楊麗;王迎春;李峰;;鋼板剪力墻彈塑性分析[J];建筑結(jié)構(gòu);2007年10期

10 王敏;曹萬(wàn)林;張建偉;;組合剪力墻的抗震研究與發(fā)展[J];地震工程與工程振動(dòng);2007年05期

相關(guān)博士學(xué)位論文 前2條

1 王萌;強(qiáng)烈地震作用下鋼框架的損傷退化行為[D];清華大學(xué);2013年

2 周明;非加勁與防屈曲鋼板剪力墻結(jié)構(gòu)設(shè)計(jì)方法研究[D];清華大學(xué);2009年

相關(guān)碩士學(xué)位論文 前4條

1 張健;四角連接鋼板剪力墻力學(xué)性能研究[D];哈爾濱工業(yè)大學(xué);2014年

2 李巖;鋼框架—鋼板剪力墻結(jié)構(gòu)體系的試驗(yàn)研究與理論分析[D];西安建筑科技大學(xué);2011年

3 張文強(qiáng);半剛接鋼框架—內(nèi)填非加勁薄鋼板剪力墻體系的試驗(yàn)研究與理論分析[D];西安建筑科技大學(xué);2010年

4 董子建;非加勁鋼板剪力墻試驗(yàn)與理論研究[D];西安建筑科技大學(xué);2005年

,

本文編號(hào):2182306

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/2182306.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bd8ac***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com