天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 建筑工程論文 >

薄壁矩形波紋腹板H型鋼梁整體穩(wěn)定性研究

發(fā)布時間:2018-08-08 14:36
【摘要】:本文根據(jù)波紋腹板型鋼和冷彎薄壁型鋼結構的受力特點和局限性,結合《結構用高頻焊接薄壁H型鋼》提出了一種新構件——薄壁波紋腹板H型鋼梁,意在提高薄壁H型鋼的整體穩(wěn)定性。為了促進更多波紋在我國的全面推廣,故將波紋設定為矩形波形。本文對于新構件整體穩(wěn)定性的研究內容和結論主要有以下幾點:1、本文對提出的新構件的截面幾何尺寸初選的依據(jù)進行了詳盡闡述,進而對此新構件的截面進行了設計,包括腹板高度、腹板厚度、波幅、波長、翼緣寬度、翼緣厚度等參數(shù)。筆者對所提出的新構件申請了實用新型專利,受理專利號為201620571726.5。2、推導簡化了計算新型構件截面特性的計算公式,運用簡化的公式計算了新型構件的截面特性,選取了《結構用高頻焊接薄壁H型鋼》中普通焊接薄壁H型鋼梁的一組截面,對比了相同條件下兩者的截面特性,發(fā)現(xiàn)新型構件的Iy和Wy均大于普通焊接薄壁H型鋼梁,說明新型構件的側向抗彎能力大于平腹板構件,其平面外剛度大幅度提高,故構件的平面外穩(wěn)定性能好,抗壓穩(wěn)定性、抗側向彎曲變形能力都得到了提高,最后依據(jù)相關規(guī)范要求對新型構件構造了一系列截面型號;3、采用ABAQUS有限元軟件對提出的構件進行模型的建立,不考慮構件的初始缺陷,研究限定在彈性屈曲范圍內,結合相應規(guī)范初選構件截面幾何參數(shù),設定其邊界條件和載荷形式。通過不斷變化構件的幾何參數(shù)得出了各幾何尺寸與新型構件整體失穩(wěn)的臨界屈曲荷載之間的關系曲線,研究結果表明:(1)腹板厚度越厚構件發(fā)生失穩(wěn)時的臨界屈曲荷載值越大,腹板厚度的增加可提高構件的整體穩(wěn)定性;腹板高度越高構件的臨界屈曲荷載值越大,且變化平緩,說明腹板高度增加可提高構件的整體穩(wěn)定性;波幅的變化對構件的整體穩(wěn)定性能影響不大;波長越長構件發(fā)生失穩(wěn)時的臨界屈曲荷載值越小,波長越長構件的整體穩(wěn)定性越差;(2)翼緣寬度的增加使得構件的臨界屈曲荷載值先逐漸增大到達一定數(shù)值后又下降,說明增大翼緣寬度可提高構件失穩(wěn)的屈曲荷載,但達到一定數(shù)值會降低構件的屈曲荷載;翼緣厚度越厚構件發(fā)生失穩(wěn)時的臨界屈曲荷載值越大,適當增加翼緣厚度可一定程度提高構件的整體穩(wěn)定性。4、本文為了進一步分析矩形波形的突出特點,在同等條件下對比了三角形波形和正弦形波形各自幾何參數(shù)對其臨界屈曲荷載值的影響規(guī)律,結果如下:(1)薄壁矩形波紋腹板H型鋼梁在跨度5m~6m范圍內其整體穩(wěn)定性具有明顯優(yōu)勢;(2)薄壁矩形波紋腹板H型鋼梁在相同腹板厚度情況下發(fā)生整體失穩(wěn)時的臨界屈曲荷載值要高于三角形波形和正弦波形,臨界屈曲荷載值提高約8%~9%;(3)薄壁矩形波紋腹板H型鋼梁在腹板高度相同時臨界屈曲荷載值要明顯高于三角形波形和正弦波形,且在腹板高度為800mm以上時,這種差距更加明顯,臨界屈曲荷載值提高約15%~24%;(4)相比于三角形和正弦波紋來說波長對薄壁矩形波紋腹板H型鋼梁的臨界屈曲荷載沒有明顯的影響,相較于正弦波形而言,相同波長時薄壁矩形波形的臨界屈曲荷載值提高約6%~17%,并且薄壁矩形波紋腹板H型鋼梁在同等條件下隨著波長的不斷增加其構件的整體穩(wěn)定性要優(yōu)于三角形和正弦波形腹板H型鋼梁;(5)在同等條件下,隨著翼緣寬度的增加矩形波形構件發(fā)生整體失穩(wěn)時的臨界屈曲荷載值大于正弦波形和三角波形,其臨界屈曲荷載值提高約10%;(6)在設計時,若需要寬翼緣的情況下可優(yōu)先選擇薄壁矩形波紋腹板H型鋼梁,并且適當增加翼緣的厚度,可進一步提高構件整體穩(wěn)定性;除了波幅這一參數(shù)外,薄壁矩形波紋腹板H型鋼梁發(fā)生整體失穩(wěn)的臨界屈曲荷載較大,在相同參數(shù)變化過程中薄壁矩形波紋腹板H型鋼梁構件發(fā)生整體失穩(wěn)時的臨界屈曲荷載值均明顯高于三角形和正弦波紋。這是本文研究的重要結論。
[Abstract]:In this paper, according to the stress characteristics and limitations of corrugated web steel and cold formed thin-walled steel structure, a new component, thin wall corrugated web H steel beam, is put forward in combination with the high frequency welded thin-walled H steel with "structure". It is intended to improve the overall stability of thin wall H steel. In order to promote more wave pattern in our country, the ripple is set. It is a rectangular waveform. The main contents and conclusions of this paper are as follows: 1. This paper expounds the basis of the first selection of the geometric size of the new component, and then the section of the new component is designed, including the height of the web, the thickness of the web, the amplitude, the wavelength, the width of the flange, the flange thickness. The new component is applied to the new component, and the patent number is 201620571726.5.2. The calculation formula for calculating the cross section characteristic of the new component is simplified. The section characteristics of the new component are calculated by the simplified formula, and the high frequency welded thin-walled H steel > common welded thin wall H steel in the structure is selected. A group of sections of the beam are compared with the cross section characteristics under the same conditions. It is found that the Iy and Wy of the new component are larger than the ordinary welded thin-walled H type steel beams. It shows that the lateral bending ability of the new component is greater than that of the flat web member. The lateral stiffness of the new component is greatly improved, so the stability performance of the component is good, the compression stability and the lateral bending resistance change. The shape ability has been improved. Finally, a series of section models are constructed for the new component according to the requirements of the relevant specifications. 3, the ABAQUS finite element software is used to establish the model of the proposed component, without considering the initial defects of the components. The study is limited to the elastic buckling range, and the geometric parameters of the sections of the corresponding primary selected components are set. The relationship between the geometric size and the critical buckling load of the new component is obtained by changing the geometric parameters of the component. The results show that: (1) the thicker the thickness of the web, the greater the critical buckling load is, the increase of the thickness of the web can improve the whole structure of the component. The higher the height of the web, the greater the value of the critical buckling load and the slow change, which indicates that the increase of the height of the web can improve the overall stability of the component, and the change of the amplitude has little effect on the overall stability of the component; the longer the length of the component, the smaller the critical buckling load is, the longer the wavelength the longer the stability of the component is. The worse, (2) the increase of the flange width makes the critical buckling load of the component gradually increase to a certain value and then decrease. It is indicated that the buckling load of the member can be increased by increasing the flange width, but the buckling load of the member can be reduced by increasing the flange width, and the thicker the flange thickness, the greater the critical buckling load of the buckling load, the more suitable for the buckling load. When the flange thickness can be increased to a certain extent, the overall stability of the component can be improved to a certain extent. In order to further analyze the prominent characteristics of the rectangular waveforms, the influence of the geometric parameters of the triangular and sinusoidal waveforms on the critical buckling load values is compared under the same conditions. The results are as follows: (1) the thin-walled rectangular corrugated web H steel beam is in the following conditions. The overall stability has obvious advantages in the range of 5m ~ 6m span. (2) the critical buckling load of the thin-walled rectangular corrugated web H steel beam under the same thickness condition is higher than the triangle wave and the sine wave shape, the critical buckling load is raised about 8% to 9%, and (3) the thin-walled rectangular corrugated web H steel beam is high in the web. At the same degree, the critical buckling load is obviously higher than the triangle wave and the sine wave, and when the height of the web is above 800mm, the gap is more obvious, and the critical buckling load is increased by about 15% ~ 24%. (4) the critical buckling load of the thin-walled rectangular corrugated web H steel beam is not obvious compared to the triangle and the sinusoidal wave. Compared with the sinusoidal wave, the critical buckling load of the thin rectangular wave is about 6% ~ 17% at the same wavelength, and the thin-walled rectangular corrugated web H type steel beam is better than the triangle and the sine wave web H steel beam with the constant increase of the wavelength. (5) under the same condition, As the width of the flange increases, the critical buckling load of the rectangular wave member is greater than that of the sine wave and the triangle wave, and the critical buckling load is increased by about 10%. (6) when the wide flange is needed, the thin-walled rectangular corrugated abdominal H steel beam can be selected first, and the flange thickness can be increased properly. In addition to the amplitude, the critical buckling load of the thin-walled rectangular corrugated web H steel beam has a larger critical buckling load than the amplitude. The critical buckling load value of the thin-walled rectangular corrugated web H steel beam members during the whole instability is obviously higher than that of the triangle and the sine wave. This is an important conclusion of this study.
【學位授予單位】:西南石油大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU392.1

【參考文獻】

相關期刊論文 前10條

1 朱奇;李國強;;波紋腹板H型鋼梁受壓翼緣局部穩(wěn)定理論研究[J];佳木斯大學學報(自然科學版);2014年03期

2 陳勇;;波紋腹板H型鋼梁的整體穩(wěn)定性[J];黑龍江科技學院學報;2013年04期

3 胡啟平;王萌萌;;基于哈密頓體系的薄壁型鋼構件的整體穩(wěn)定性分析[J];河北工程大學學報(自然科學版);2013年02期

4 陳華婷;遲嘯起;黃艷;;正弦波形波紋腹板工字型鋼板梁的抗剪強度[J];公路交通科技;2013年05期

5 陳亮;鄭廷銀;;腹板幾何尺寸變化對梯形波紋腹板工字鋼梁應力集中的影響[J];南京工業(yè)大學學報(自然科學版);2012年04期

6 王華東;李賢;孫豐;;ABB先進焊接技術在波紋腹板H型鋼生產中的應用[J];金屬加工(熱加工);2012年10期

7 張哲;李國強;孫飛飛;;波紋腹板H型鋼梁受彎承載力性能研究[J];建筑結構學報;2011年10期

8 劉洋;;新型高強冷彎薄壁型鋼的研究總述[J];建筑設計管理;2011年09期

9 許莉;房貞政;陳凌秀;;幾何參數(shù)對預應力波紋鋼腹板連續(xù)箱梁屈曲荷載的影響研究[J];華中師范大學學報(自然科學版);2010年04期

10 俞煥慶;徐海琴;;波紋腹板H型梁特性與前景研究[J];中國建筑金屬結構;2010年11期

相關會議論文 前1條

1 何?;廖芳芳;;冷彎薄壁型鋼結構產品的開發(fā)與應用[A];第七屆全國現(xiàn)代結構工程學術研討會論文集[C];2007年

相關博士學位論文 前1條

1 王海明;冷彎薄壁型鋼受彎構件穩(wěn)定性能研究[D];哈爾濱工業(yè)大學;2009年

相關碩士學位論文 前10條

1 溫秋平;翼緣加勁的冷彎薄壁型鋼受彎穩(wěn)定性分析[D];西南石油大學;2014年

2 楊洋洋;梯形波紋腹板H型鋼梁的力學性能研究[D];西安建筑科技大學;2013年

3 羅楠;波紋鋼腹板的抗剪屈曲和模態(tài)分析[D];燕山大學;2012年

4 焦義;波紋腹板鋼梁的受力分析[D];昆明理工大學;2012年

5 王樹榮;正弦波紋腹板H型鋼梁的力學分析[D];燕山大學;2012年

6 楊波;工字梁在端彎矩和上翼緣橫向荷載共同作用下的整體穩(wěn)定性[D];湖南大學;2010年

7 常建華;波紋腹板鋼梁承載力研究[D];河南工業(yè)大學;2010年

8 董穎杰;波紋腹板工字型截面梁受力機理分析與經(jīng)濟性探討[D];山東建筑大學;2010年

9 陳吉娜;波紋鋼腹板梁穩(wěn)定性的研究[D];石家莊鐵道學院;2009年

10 田微;冷彎薄壁非卷邊槽鋼承受集中荷載時的承載力[D];西安建筑科技大學;2005年

,

本文編號:2172096

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/2172096.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶99036***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com