天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 建筑工程論文 >

太陽(yáng)能建筑非均勻節(jié)能構(gòu)造及熱環(huán)境分析

發(fā)布時(shí)間:2018-06-16 03:21

  本文選題:太陽(yáng)能建筑 + 室外綜合溫度; 參考:《西安理工大學(xué)》2017年碩士論文


【摘要】:目前全球能源形式嚴(yán)峻,而我國(guó)太陽(yáng)能資源豐富,發(fā)展利用太陽(yáng)能對(duì)我國(guó)可持續(xù)發(fā)展具有重要的現(xiàn)實(shí)意義,尤其對(duì)于建筑節(jié)能意義重大。太陽(yáng)能建筑可以有效利用太陽(yáng)能來(lái)降低建筑能耗,與此同時(shí)還可以通過(guò)優(yōu)化太陽(yáng)能建筑構(gòu)造來(lái)改善室內(nèi)熱環(huán)境。太陽(yáng)能建筑受室外太陽(yáng)輻射強(qiáng)度影響,不同地區(qū)太陽(yáng)輻射強(qiáng)度不同,而太陽(yáng)輻射受太陽(yáng)方位角和太陽(yáng)高度角的影響,所以圍護(hù)結(jié)構(gòu)的室外綜合溫度與朝向密切相關(guān)。本文基于外擾朝向差異,根據(jù)我國(guó)建筑氣候特點(diǎn),分別選取了被動(dòng)式太陽(yáng)能采暖氣候分區(qū):最佳氣候A區(qū)、適宜氣候A區(qū)、適宜氣候C區(qū)的代表地區(qū):拉薩、中衛(wèi)和西安(年累計(jì)太陽(yáng)輻射分別為:7138MJ/m~2、5853MJ/m~2、4406MJ/m~2 ),通過(guò)現(xiàn)場(chǎng)調(diào)研測(cè)試,結(jié)合各地區(qū)當(dāng)?shù)剞r(nóng)村居住建筑構(gòu)造特點(diǎn)與農(nóng)民居住生活習(xí)慣,對(duì)建筑進(jìn)行功能分區(qū)與室內(nèi)熱環(huán)境分區(qū)設(shè)計(jì)。然后利用非均勻節(jié)能構(gòu)造設(shè)計(jì)原理,通過(guò)理論分析及軟件模擬,對(duì)基于外擾朝向差異下的太陽(yáng)能建筑圍護(hù)結(jié)構(gòu)構(gòu)造體系進(jìn)行了詳細(xì)的研究分析。本論文研究得到的主要成果為:(1)根據(jù)中衛(wèi)和拉薩地區(qū)室內(nèi)熱環(huán)境測(cè)試結(jié)果,發(fā)現(xiàn)當(dāng)?shù)囟臼覂?nèi)熱環(huán)境較差,均未達(dá)到規(guī)范標(biāo)準(zhǔn);根據(jù)中衛(wèi)地區(qū)的實(shí)地調(diào)研結(jié)果,發(fā)現(xiàn)當(dāng)?shù)鼐幼≌邔?duì)室內(nèi)熱環(huán)境滿意度較差,對(duì)于改善冬季室內(nèi)熱環(huán)境有著強(qiáng)烈愿望;計(jì)算了西安、中衛(wèi)、拉薩地區(qū)冬至日的室外綜合溫度;確定采暖期室內(nèi)熱舒適指標(biāo)為:南向非邊側(cè)房間平均溫度不低于14℃,晝夜溫差不大于6℃;北向非邊側(cè)房間平均溫度不低于8℃,晝夜溫差不大于6℃;南北外墻壁面溫度差不大于4℃。(2)在實(shí)地調(diào)研與文獻(xiàn)分析的基礎(chǔ)上為三個(gè)地區(qū)總結(jié)抽象出一個(gè)既有建筑模型,并在此基礎(chǔ)上優(yōu)化改造出一個(gè)典型建筑模型;根據(jù)非均勻節(jié)能構(gòu)造原理計(jì)算三個(gè)地區(qū)的非均勻傳熱系數(shù),確定以KS*= 1.34KE*=1.35KW* =1.49KN*作為典型建筑模型的外墻構(gòu)造選擇基準(zhǔn);根據(jù)穩(wěn)態(tài)方法計(jì)算了典型建筑模型和既有建筑模型在冬至日的傳熱耗熱量,結(jié)果表明西安、中衛(wèi)、拉薩地區(qū)4mm普通塑鋼中空玻璃的南向窗戶均為得熱構(gòu)件,其中拉薩地區(qū)得熱量最大,中衛(wèi)次之,西安最小;相比單玻鋁合金外窗,拉薩地區(qū)南向單位面積外窗可節(jié)能71.43W/m~2,中衛(wèi)地區(qū)可節(jié)能80.59W/m~2,西安地區(qū)可節(jié)能64.36 W/m~2。典型建筑模型采用粉煤灰蒸養(yǎng)磚時(shí)整個(gè)建筑耗熱量?jī)H為既有建筑模型的37.1% (西安)、34.1% (中衛(wèi))、27.9% (拉薩);使用粉煤灰燒結(jié)磚時(shí)典型建筑的耗熱量?jī)H為既有建筑的34.5% (西安)、31.5% (中衛(wèi))、24.9% (拉薩)。(3)通過(guò)DesignBuilder軟件計(jì)算典型建筑模型的室內(nèi)空氣溫度,發(fā)現(xiàn)南向房間溫度均比北向房間溫度高;典型建筑模型的主臥空氣溫度相對(duì)既有建筑模型有明顯提高,其提升值:西安為4℃左右、中衛(wèi)為5℃左右、拉薩為5℃左右。對(duì)于主臥和客廳等南向房間,典型建筑的室內(nèi)空氣溫度相比既有建筑有明顯提高;而對(duì)于儲(chǔ)物間等北向房間,拉薩地區(qū)典型建筑的室內(nèi)空氣溫度相比既有建筑略有降低,中衛(wèi)和西安地區(qū)典型建筑的室內(nèi)空氣溫度相比既有建筑略有升高。這種主要使用房間溫度的明顯提高和次要使用房間溫度的基本不變,達(dá)到了本文建筑模型熱環(huán)境分區(qū)的目的。
[Abstract]:At present, the global energy forms are severe, and the solar energy resources are rich in our country. The development and utilization of solar energy has important practical significance for the sustainable development of our country, especially for building energy conservation. Solar buildings can effectively use the solar energy to reduce the energy consumption of the building, and the solar building can be improved by optimizing the solar building structure to improve the energy consumption. Indoor thermal environment. Solar energy buildings are affected by the outdoor solar radiation intensity, and the solar radiation intensity is different in different regions. The solar radiation is influenced by the azimuth and solar altitude angle of the sun, so the outdoor comprehensive temperature of the enclosure structure is closely related to the orientation. The passive solar heating climate zone: the best climate A area, suitable climate A area, suitable climate C area representative area: Lhasa, central Wei and Xi'an (annual cumulative solar radiation is respectively: 7138MJ/m~25853MJ/m~24406MJ/m~2), through field investigation and testing, combined with local rural residential construction characteristics and farmers living habits, The function zoning and indoor thermal environment zoning are designed. Then, using the principle of non uniform energy saving structure design, through theoretical analysis and software simulation, the structure system of solar building enclosure structure based on external disturbance orientation is studied and analyzed in detail. The main achievements of this paper are as follows: (1) according to the central defense and the central defense. The indoor thermal environment test results of Lhasa area found that the local winter indoor thermal environment was poor and did not reach the standard standard. According to the field survey results in the middle Wei area, it was found that the local residents were less satisfied with the indoor thermal environment and had a strong desire to improve the indoor thermal environment in winter, and the winter solstice in Xi'an, central and Lhasa areas were calculated. The indoor thermal comfort index is determined as: the indoor thermal comfort index of the heating period is that the average temperature of the south to non side room is not less than 14 C, the temperature difference of the day and night is not more than 6 degrees C, the average temperature of the north side room is not less than 8 C, the temperature difference of the day and night is not more than 6, and the difference of the wall temperature difference between the north and the south is not more than 4. (2) three on the basis of field investigation and literature analysis In this area, an existing building model is abstracted, and a typical building model is optimized on this basis. The non uniform heat transfer coefficient of three regions is calculated according to the principle of non-uniform energy saving structure, and the selection of KS*= 1.34KE*=1.35KW* =1.49KN* as a typical building model is determined; and the calculation is based on the steady state method. The heat transfer heat consumption of the typical building model and the existing building model in winter solstice shows that the south windows of the 4mm ordinary plastic steel hollow glass in the Xi'an, middle Wei and Lhasa area are all hot components, of which the Lhasa area has the highest heat, the middle guard, the smallest in Xi'an, and the outer window of the single glass aluminum alloy, and the outer window of the southern unit area of the Lhasa area. Energy saving 71.43W/m~2, central Wei area can save energy 80.59W/m~2, Xi'an area can save energy 64.36 W/m~2. typical building model using fly ash steam curing brick, the whole building consumption is only 37.1% of the existing building model (Xi'an), 34.1% (middle guard), 27.9% (Lhasa); when using powder coal ash sintered brick, the heat consumption of typical building is only 34.5% of the existing building. Xi'an), 31.5% (central guard), 24.9% (Lhasa). (3) the indoor air temperature of the typical building model is calculated by DesignBuilder software. It is found that the temperature of the south room is higher than that of the north room. The main air temperature of the typical building model is significantly higher than that of the existing building model, and its lifting value is about 4 C in Xi'an and around 5 in the center guard. The room air temperature in the typical building is significantly higher than that of the existing buildings in the southern room, such as the main bedroom and the living room, and the indoor air temperature of the typical buildings in the Lhasa area is slightly lower than that of the existing buildings, and the indoor air temperature of the typical buildings in the middle and Xi'an areas is compared with the indoor air temperature in the central and Xi'an areas. There is a slight increase in the building. The main use of the room temperature and the temperature of the secondary room are basically unchanged, and the purpose of this building model thermal environment partition is achieved.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU111

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;美國(guó)新型太陽(yáng)能建筑[J];福建能源開(kāi)發(fā)與節(jié)約;2002年04期

2 劉林森;太陽(yáng)能建筑——科技與市場(chǎng)的結(jié)合點(diǎn)[J];建筑知識(shí);2002年03期

3 張惠婷,宋秋;太陽(yáng)能建筑技術(shù)在城市住宅中的應(yīng)用[J];建筑;2003年05期

4 ;首座奧運(yùn)全太陽(yáng)能建筑在京落成[J];能源研究與信息;2003年02期

5 京時(shí);首座全太陽(yáng)能建筑落成[J];墻材革新與建筑節(jié)能;2003年06期

6 無(wú)憂;太陽(yáng)能建筑商機(jī)無(wú)限[J];建設(shè)科技;2003年12期

7 ;太陽(yáng)能建筑發(fā)展方向[J];大眾用電;2004年07期

8 仲繼壽;太陽(yáng)能建筑的技術(shù)途徑和發(fā)展策略[J];太陽(yáng)能;2004年04期

9 仲繼壽;;太陽(yáng)能建筑的技術(shù)途徑和發(fā)展策略[J];中國(guó)建設(shè)動(dòng)態(tài).陽(yáng)光能源;2004年04期

10 仲繼壽;太陽(yáng)能建筑發(fā)展思路[J];建設(shè)科技;2005年12期

相關(guān)會(huì)議論文 前10條

1 仲繼壽;;太陽(yáng)能建筑發(fā)展的中國(guó)之路[A];中國(guó)可再生能源學(xué)會(huì)第八次全國(guó)代表大會(huì)暨可再生能源發(fā)展戰(zhàn)略論壇論文集[C];2008年

2 仲繼壽;;太陽(yáng)能建筑的技術(shù)途徑和發(fā)展策略[A];全國(guó)住宅工程太陽(yáng)能熱水應(yīng)用研討會(huì)論文集[C];2004年

3 張濱;趙建平;;現(xiàn)階段普及推廣太陽(yáng)能建筑的可行性分析[A];海峽兩岸第十四屆照明科技與營(yíng)銷研討會(huì)專題報(bào)告暨論文集[C];2007年

4 李樹(shù)超;;淺談節(jié)能環(huán)保的太陽(yáng)能建筑[A];2007中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)優(yōu)秀論文集(下卷)[C];2007年

5 何如樸;;甘肅太陽(yáng)能的利用及發(fā)展[A];加入WTO和中國(guó)科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對(duì)策(下冊(cè))[C];2002年

6 俞善慶;;太陽(yáng)能建筑與生態(tài)樓[A];21世紀(jì)太陽(yáng)能新技術(shù)——2003年中國(guó)太陽(yáng)能學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2003年

7 胡英;;淺談大連地區(qū)太陽(yáng)能建筑[A];全國(guó)住宅工程太陽(yáng)能熱水應(yīng)用研討會(huì)論文集[C];2004年

8 鮑英華;趙龍;;太陽(yáng)能建筑的可操作性探討[A];建筑環(huán)境與建筑節(jié)能研究進(jìn)展——2007全國(guó)建筑環(huán)境與建筑節(jié)能學(xué)術(shù)會(huì)議論文集[C];2007年

9 邸們;王W,

本文編號(hào):2025034


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/2025034.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8415a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com