開縫耗能組合墻的抗震性能研究
本文選題:開縫耗能組合墻 + 軟鋼耗能器; 參考:《廣州大學(xué)》2017年碩士論文
【摘要】:剪力墻尤其是核心筒剪力墻作為(超)高層建筑的主要抗側(cè)力和承重構(gòu)件,由于高寬比較小,破壞形式往往為脆性的剪切破壞,地震作用下剪力墻底部損傷嚴(yán)重,震后修復(fù)極其困難,修復(fù)費(fèi)用昂貴。因此,有必要對高寬比較小的剪力墻進(jìn)行改善,控制剪力墻的損傷,解決高寬比較小的剪力墻以剪切破壞為主,延性差以及災(zāi)后難修復(fù)的問題。本文綜合利用學(xué)者們關(guān)于改善剪力墻的研究思路,提出一種新型的開縫耗能組合墻:在高寬比較小的剪力墻中部設(shè)置豎縫,使得墻肢高寬比增大的同時,剪力墻破壞形態(tài)由剪切破壞轉(zhuǎn)變?yōu)閺澢茐?在墻體兩端設(shè)置性能更優(yōu)越的鋼管混凝土邊緣構(gòu)件來解決開縫帶來的剛度與強(qiáng)度下降問題;在縫中設(shè)置分離式的軟鋼耗能器耗散地震能量,解決剪力墻在地震作用下遭受過多損傷與破壞的問題,同時分離式的耗能器布置有利于震后快速更換,可以解決震后修復(fù)難的問題。本文分別從構(gòu)件與結(jié)構(gòu)兩個層次上研究開縫耗能組合墻的抗震性能,從承載力、變形能力與破壞形式等方面對開縫耗能組合墻構(gòu)件進(jìn)行研究,從頂點(diǎn)位移、基底剪力、層間位移角、核心筒材料損傷以及地震能量耗散等方面對開縫耗能組合墻結(jié)構(gòu)進(jìn)行研究,最后為了全面了解開縫耗能組合墻結(jié)構(gòu)在地震動隨機(jī)性下表現(xiàn)出來的抗震性能,選取了 100條地震動記錄,對開縫耗能組合墻結(jié)構(gòu)進(jìn)行地震易損性分析,從概率的方面來評估結(jié)構(gòu)的抗震性能。本文主要的研究工作與結(jié)論有以下幾個方面:(1)首先,針對地震作用下開縫剪力墻的力學(xué)特性,提出帶分離式軟鋼耗能器的組合剪力墻,并從構(gòu)件角度研究開縫耗能組合墻的抗震性能。從承載力、變形能力、耗能能力與破壞形式等方面對開縫耗能組合墻與低矮剪力墻抗震性能進(jìn)行對比分析。結(jié)果顯示,開縫耗能組合墻的峰值荷載比低矮剪力墻提高了 2.2%,極限位移為低矮剪力墻的3.23倍,延性為低矮剪力墻的2.16倍,耗能系數(shù)為低矮剪力墻的1.91倍;開縫耗能組合墻破壞形態(tài)為趨于延性的彎曲破壞,不同于低矮剪力墻的剪切破壞。(2)為研究帶分離式金屬耗能器的組合剪力墻在整體結(jié)構(gòu)中的抗震性能,以一棟超高層建筑結(jié)構(gòu)為對象,研究開縫耗能組合墻結(jié)構(gòu)的抗震性能。采用開縫耗能組合墻替換部分原剪力墻,并從頂點(diǎn)位移、基底剪力、層間位移角、核心筒材料損傷、地震動能量消耗以及構(gòu)件耗能分布情況等方面來開展兩個結(jié)構(gòu)的抗震性能對比研究。結(jié)果表明,在8度(0.2g)罕遇地震作用下,開縫耗能組合墻結(jié)構(gòu)與原結(jié)構(gòu)相比,在頂點(diǎn)位移、基底剪力與層間位移角上并沒有下降;核心筒構(gòu)件的材料損傷情況有了明顯的改善,核心筒混凝土受壓嚴(yán)重?fù)p傷的數(shù)量下降100%,混凝土受壓中度損傷的數(shù)量下降83%,鋼筋受拉中度損傷的數(shù)量下降82%;滯回耗能集中于核心筒底部的情況有所改善,核心筒底層剪力墻滯回耗能下降40%左右。同時為了研究墻體關(guān)鍵參數(shù)開縫數(shù)量對整體結(jié)構(gòu)的影響,從上述幾個方面對開縫數(shù)量不同的開縫耗能組合墻結(jié)構(gòu)進(jìn)行了抗震性能的對比分析,結(jié)果顯示,分縫數(shù)量為2的開縫組合墻結(jié)構(gòu)比分縫數(shù)量為1的相比,核心筒混凝土受壓嚴(yán)重?fù)p傷與鋼筋受拉中度損傷的數(shù)量都有所下降,核心筒底層剪力墻滯回耗能下降18%左右,說明分縫數(shù)量為2的開縫組合墻結(jié)構(gòu)的抗震性能更加優(yōu)越。(3)為探討開縫耗能組合墻結(jié)構(gòu)在地震作用下發(fā)生各級破壞的概率,對原結(jié)構(gòu)與開縫耗能組合墻結(jié)構(gòu)分別進(jìn)行以PGV (地面峰值速度)與PGA (地面峰值加速度)為地震動強(qiáng)度參數(shù)的地震易損性分析。結(jié)果顯示,在8度(0.2g)罕遇地震作用下,以PGV為地震動強(qiáng)度參數(shù)的地震易損性分析中,開縫耗能組合墻結(jié)構(gòu)在輕微損傷、中度損傷、嚴(yán)重?fù)p傷三個極限狀態(tài)下的超越概率比原結(jié)構(gòu)分別下降了 9.22%、65.24%、84.59%;以PGA為地震動強(qiáng)度參數(shù)的地震易損性分析中,開縫耗能組合墻結(jié)構(gòu)在輕微損傷、中度損傷、嚴(yán)重?fù)p傷三個極限狀態(tài)下的超越概率比原結(jié)構(gòu)分別下降了 5.1%、23.45%、50.22%;說明開縫耗能組合墻結(jié)構(gòu)在地震動隨機(jī)性下的抗震性能比原結(jié)構(gòu)更加優(yōu)越。
[Abstract]:The shear wall, especially the core wall shear wall, is the main anti lateral force and bearing member of the high rise building. Because of the small height and width, the failure form is often brittle shear failure. The bottom of the shear wall is seriously damaged by the earthquake. It is extremely difficult to repair the shear wall after the earthquake, and the repair cost is expensive. Therefore, it is necessary to carry out the shear wall with relatively small height and width. To improve the damage of shear walls and to solve the problem of shear failure of shear walls with smaller width and width, and the problem of difficult to repair after the disaster. In this paper, a new type of combined wall with slit energy dissipation is proposed by the comprehensive use of scholars to improve the shear wall: a vertical joint is set up in the middle of the shear wall with relatively small height and width, so that the height of the wall is high. While the width ratio increases, the failure mode of shear wall is transformed from shear failure to bending failure, and a more superior performance steel tube concrete edge member is set at both ends of the wall to solve the problem of stiffness and strength reduction caused by the slit, and the dissipative seismic energy of the separate type soft steel energy dissipator is set up in the seams to solve the shear wall subjected to earthquake action. At the same time, the separation type energy dissipator arrangement is beneficial to the rapid replacement of the earthquake after the earthquake, which can solve the difficult problem of post earthquake repair. In this paper, the seismic performance of the combined wall with slit energy consumption is studied from two levels of components and structures. On the basis of the study, the structure of the composite wall with slit energy dissipation is studied from the aspects of the vertex displacement, the base shear, the interlayer displacement angle, the material damage of the core tube and the dissipation of the earthquake energy. Finally, 100 ground motion records are selected for the comprehensive understanding of the earthquake resistance performance of the structure of the composite wall with the slit energy dissipation under the random ground motion. In this paper, the main research work and conclusion of this paper are as follows: (1) firstly, in view of the mechanical characteristics of the slit shear walls under the action of the earthquake, a composite shear wall with a separate soft steel energy absorber is proposed, and the joint is studied from the angle of the component. The seismic performance of the combined wall with energy dissipation is compared and analyzed from the bearing capacity, the deformation capacity, the energy dissipation capacity and the failure mode. The results show that the peak load of the combined wall with the slit energy consumption is 2.2% higher than the low shear wall, and the ultimate displacement is 3.23 times of the low shear wall, and the ductility is the ductility. The energy dissipation factor is 2.16 times of the low shear wall, and the energy dissipation factor is 1.91 times of the low shear wall, and the failure mode of the composite wall with the slit energy dissipation is different from the shear failure of the low shear wall. (2) the seismic performance of the composite shear wall with the separation type metal energy dissipator in the whole structure is used as a super high rise building structure. The seismic performance of the composite wall structure with slit energy dissipation is studied. The seismic performance of the two structures is compared with the displacement of the wall, the base shear, the interlayer displacement angle, the material damage of the core, the energy consumption of the ground motion and the distribution of energy consumption of the components. Under the action of 8 degree (0.2g) rare earthquake, the structure of the combined wall with slit energy dissipation has not decreased on the vertex displacement, the base shear force and the interlayer displacement angle, and the material damage of the core tube components has been obviously improved, the number of the serious damage to the concrete compression of the core tube is reduced by 100%, and the amount of the concrete under the moderate damage is under the amount of moderate damage. At 83%, the number of medium damage of steel bar is reduced by 82%, the situation of hysteretic energy concentrating on the bottom of core tube is improved, and the hysteretic energy of the bottom shear wall of core tube is reduced by about 40%. In order to study the influence of the number of key parameters on the whole structure of the wall, the energy dissipation composite wall with different slit number is different from the above aspects. Compared with the seismic performance of the structure, the results show that compared with the number of seams with the number of 2 seams, the number of serious damage to concrete under the core tube and the moderate damage to the reinforcement in the core tube decreased, and the hysteresis energy of the bottom shear wall of the core tube decreased by about 18%, indicating the slit group with the number of seams of 2. The seismic performance of the composite wall structure is more superior. (3) in order to discuss the probability of damage at all levels under the earthquake action, the seismic vulnerability analysis of the original structure and the joint energy dissipating wall structure with the PGV (ground peak velocity) and the PGA (ground peak acceleration) as the ground motion intensity parameters are analyzed. The results show that Under the action of 8 degree (0.2g) rare earthquake, in the seismic vulnerability analysis of PGV as ground motion intensity parameters, the transcendental probability of the joint energy dissipation wall structure under three limit states of slight damage, moderate damage and serious damage decreased by 9.22%, 65.24%, 84.59%, respectively, and the seismic vulnerability analysis with PGA as the ground motion intensity parameters In the three limit states, the surpassing probability of the combined wall with slit energy dissipation is 5.1%, 23.45%, and 50.22%, respectively, under the three limit states, which shows that the seismic performance of the combined wall structure with the slit energy dissipation is superior to the original structure.
【學(xué)位授予單位】:廣州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU973.17;TU973.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙作周;賀小崗;楊光;葉列平;;高軸壓比下鋼管高強(qiáng)混凝土組合剪力墻抗震性能試驗研究[J];建筑結(jié)構(gòu)學(xué)報;2016年09期
2 王朋;史慶軒;王峰;王秋維;鄭曉龍;王斌;;罕遇地震作用下型鋼混凝土框架-鋼筋混凝土核心筒結(jié)構(gòu)耗能及損傷模式研究[J];工業(yè)建筑;2015年08期
3 李夢珂;盧嘯;陸新征;葉列平;;中美高層鋼筋混凝土框架-核心筒結(jié)構(gòu)抗震設(shè)計對比[J];工程力學(xué);2015年06期
4 袁新禧;鄭杰;李愛群;潘志宏;;帶豎縫及金屬阻尼器混凝土剪力墻抗震性能試驗研究[J];工程抗震與加固改造;2014年06期
5 袁新禧;潘志宏;李愛群;鄭杰;周德恒;;帶豎縫及金屬阻尼器混凝土剪力墻抗震性能研究[J];土木工程學(xué)報;2014年S1期
6 楊光;趙作周;錢稼茹;劉旭;;新型鋼管混凝土組合剪力墻抗震性能試驗研究[J];建筑結(jié)構(gòu);2014年07期
7 羅志國;黃宗芳;魏作偉;張莉華;嚴(yán)開濤;;矩形鋼管混凝土端柱-混凝土剪力墻組合墻體力學(xué)性能研究[J];建筑結(jié)構(gòu);2013年11期
8 方小丹;蔣標(biāo);韋宏;周越洲;江毅;賴洪濤;;鋼管高強(qiáng)混凝土剪力墻軸心受壓試驗研究[J];建筑結(jié)構(gòu)學(xué)報;2013年03期
9 聶建國;胡紅松;李盛勇;劉付鈞;樊健生;陶慕軒;邵大成;喻德明;;方鋼管混凝土暗柱內(nèi)嵌鋼板-混凝土組合剪力墻抗震性能試驗研究[J];建筑結(jié)構(gòu)學(xué)報;2013年01期
10 呂西林;蘇寧粉;周穎;;復(fù)雜高層結(jié)構(gòu)基于增量動力分析法的地震易損性分析[J];地震工程與工程振動;2012年05期
相關(guān)博士學(xué)位論文 前1條
1 米旭峰;支撐框架與豎縫剪力墻抗震設(shè)計研究[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 袁新禧;帶豎縫及金屬阻尼器的混凝土剪力墻抗震性能試驗研究[D];江蘇科技大學(xué);2015年
2 楊光;高軸壓比鋼管混凝土組合剪力墻抗震性能研究[D];清華大學(xué);2013年
3 李灃泰;高層建筑框架—核心筒混合結(jié)構(gòu)地震能量反應(yīng)及損傷評估[D];西安建筑科技大學(xué);2013年
4 李青;鋼管高強(qiáng)混凝土剪力墻壓彎性能試驗研究[D];華南理工大學(xué);2012年
5 宋文山;帶豎縫剪力墻板的非線性有限元分析及恢復(fù)力模型研究[D];天津大學(xué);2009年
6 于曉輝;鋼筋混凝土框架結(jié)構(gòu)的整體概率抗震能力分析[D];哈爾濱工業(yè)大學(xué);2007年
7 潘峰;鋼筋混凝土框架結(jié)構(gòu)的整體概率地震需求分析[D];哈爾濱工業(yè)大學(xué);2007年
8 玉軍;鋼筋混凝土高層建筑結(jié)構(gòu)抗震彈塑性分析方法的研究及其應(yīng)用[D];湖南大學(xué);2007年
9 孫文林;基于性能的鋼框架結(jié)構(gòu)非線性地震反應(yīng)分析[D];湖南大學(xué);2006年
10 王剛;帶縫空心R.C.剪力墻結(jié)構(gòu)試驗研究[D];西安建筑科技大學(xué);2005年
,本文編號:1961628
本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/1961628.html