用于自復位結構體系的新型鋼板剪力墻研究
本文選題:自復位結構 + 新型鋼板剪力墻; 參考:《蘇州科技大學》2017年碩士論文
【摘要】:為了提高鋼板剪力墻的耗能性能與整體結構的復位性能,本文在開蝴蝶形縫鋼板剪力墻的基礎上,提出了一種新型的鋼板剪力墻—帶邊緣加勁的單個蝴蝶型鋼板剪力墻。新型鋼板剪力墻不僅具有開蝴蝶形縫鋼板剪力墻延性好、耗能性能高的特點,還具有空間利用合理、試件加工便捷等優(yōu)勢。為進一步對這種新型的鋼板剪力墻進行研究,在BASE試件基礎上,改變鋼板剪力墻的厚度、鋼板兩側加勁肋的厚度、鋼絞線的數量、鋼絞線的面積、跨高比、軸壓比以及內填蝴蝶形鋼板剪力墻的數量,利用有限元軟件對系列試件進行模擬,得出滯回曲線、骨架曲線、耗能曲線、承載力退化曲線以及剛度退化曲線。然后,結合試件的變形和應力云圖進行分析。結果表明:1)結構能夠滿足設計要求,鋼框架在循環(huán)加載過程中處于彈性階段,震后復位性能良好,可繼續(xù)投入使用,而單個加勁蝴蝶形鋼板剪力墻屈服后進入塑性耗能,震后不能再重復使用,將其替換即可使結構恢復使用功能。2)加勁肋與鋼板焊接連接,直接決定著結構的耗能及復位性能。在板厚不變的情況下,稍微增大加勁肋的厚度,將使結構的承載力和耗能性能略有提升,對試件的剛度和穩(wěn)定承載力起到很好地補強效果,不會影響結構的剛度退化。軸壓比作用會使結構出現P-Δ效應,隨著軸壓比增加,承載力會降低?蚣艿目绺弑容^低時,試件在加載過程中會形成斜向拉力帶,耗能性能提升。但跨高比越小的框架,試件的復位性能越差。3)經過合理設計,選取鋼板厚度6mm、兩側加勁肋厚度3.5mm、初始預拉力175kN并控制試件的高厚比在440左右,選取框架的跨高比1.7,能夠使結構在耗能理想的同時達到預期的復位效果。4)當內填鋼板數量增加時,鋼板的厚度應減小,但板厚較低時,結構的耗能性能較差,滿足不了抗震性能設計要求。經設計得出,內置兩塊板時,宜選取4mm試件,高厚比控制在660左右;內置三塊板時,宜選取3mm試件,高厚比控制在880左右。此外,在用鋼量相同的情況下,單塊蝴蝶形鋼板剪力墻的抗震性能優(yōu)于多塊蝴蝶形鋼板剪力墻。5)本文所研究的鋼板剪力墻結構兼具自復位及新型鋼板剪力墻的性能特點,能夠滿足設計要求,達到性能目標。而多塊鋼板剪力墻將較薄的蝴蝶形鋼板墻提升到了應用價值。
[Abstract]:In order to improve the energy dissipation performance of the steel plate shear wall and the reset performance of the whole structure, a new type of steel plate shear wall, a single butterfly steel plate shear wall with stiffening edge, is proposed on the basis of opening the butterfly shaped steel plate shear wall. The new steel plate shear wall not only has the characteristics of good ductility and high energy dissipation performance, but also has the advantages of reasonable space utilization and convenient processing of specimens. In order to further study this new steel plate shear wall, the thickness of stiffened ribs on both sides of steel plate, the quantity of steel strand, the area of steel strand, the ratio of span to height are changed on the basis of BASE specimen. The axial compression ratio and the number of internally filled butterfly steel plate shear walls are simulated by finite element software. The hysteretic curve, skeleton curve, energy consumption curve, bearing capacity degradation curve and stiffness degradation curve are obtained. Then, the deformation and stress cloud diagram of the specimen are analyzed. The results show that the structure can meet the design requirements, the steel frame is in the elastic stage in the process of cyclic loading, the reposition performance after the earthquake is good, and it can continue to be put into use, while the single stiffened butterfly steel plate shear wall can enter the plastic energy consumption after yielding. After the earthquake, the structure can not be reused again, and its replacement can make the structure resume using function. 2) the stiffener rib is welded to the steel plate, which directly determines the energy consumption and the reset performance of the structure. When the thickness of the plate is constant, the bearing capacity and energy dissipation performance of the structure will be improved slightly by increasing the thickness of the stiffener slightly, and the stiffness and the stable bearing capacity of the specimen will be strengthened well, and the stiffness of the structure will not be affected by the degradation of the stiffness. The effect of axial compression ratio will lead to P- 螖 effect, and the bearing capacity will decrease with the increase of axial compression ratio. When the span height of the frame is low, an oblique tensile band will be formed during the loading process, and the energy dissipation performance will be improved. However, the lower the ratio of span to height, the worse the reposition performance of the specimen is. 3) after reasonable design, the thickness of steel plate is 6 mm, the thickness of stiffened rib is 3.5 mm, the initial pretension 175kN and the ratio of height to thickness of the specimen are controlled at about 440. Selecting the ratio of span to height of the frame at 1.7 can make the structure achieve the expected reset effect at the same time of energy consumption. 4) the thickness of the steel plate should be reduced when the number of steel plates is increased, but the energy dissipation performance of the structure is poor when the thickness of the plate is lower. Can not meet the seismic performance design requirements. The results show that when two boards are built in, the 4mm specimen should be selected, the ratio of height to thickness should be controlled around 660, and when three boards are built in, the 3mm specimen should be selected and the ratio of height to thickness should be controlled at about 880. In addition, the seismic performance of single butterfly steel plate shear wall is better than that of many butterfly steel plate shear walls under the same steel content.) the steel plate shear wall structure studied in this paper has the characteristics of self-reset and new type steel plate shear wall. Ability to meet design requirements and achieve performance goals. And many steel plate shear walls will be thin butterfly steel plate wall to the application value.
【學位授予單位】:蘇州科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU392.4
【相似文獻】
相關期刊論文 前10條
1 郭彥林;周明;;非加勁與防屈曲鋼板剪力墻性能及設計理論的研究現狀[J];建筑結構學報;2011年01期
2 郭彥林;周明;董全利;王小安;;三類鋼板剪力墻結構試驗研究[J];建筑結構學報;2011年01期
3 蔣路;;帶縫鋼板剪力墻應用技術分析[J];建筑科學與工程學報;2012年02期
4 寧子健;郝際平;于金光;鐘煒輝;白睿;;無粘結十字加勁鋼板剪力墻結構抗剪性能分析[J];鋼結構;2013年07期
5 ;鋼板剪力墻[J];鋼結構;1997年02期
6 陳國棟,郭彥林;十字加勁鋼板剪力墻的抗剪極限承載力[J];建筑結構學報;2004年01期
7 萬紅霞,謝偉平,王小平;考慮屈曲后強度的鋼板剪力墻極限剪力計算[J];鋼結構;2004年03期
8 郭彥林,董全利;鋼板剪力墻的發(fā)展與研究現狀[J];鋼結構;2005年01期
9 王迎春;郝際平;李峰;孫彤;;鋼板剪力墻力學性能研究[J];西安建筑科技大學學報(自然科學版);2007年02期
10 曹志亮;;帶縫鋼板剪力墻彈性穩(wěn)定性分析[J];鋼結構;2007年03期
相關會議論文 前10條
1 段清星;鄒自明;曾清華;何歡歡;趙偉;;鋼板剪力墻研究現狀和工程應用[A];鋼結構工程研究(九)——中國鋼結構協(xié)會結構穩(wěn)定與疲勞分會第13屆(ISSF-2012)學術交流會暨教學研討會論文集[C];2012年
2 朱俊;陸道淵;黃良;徐麟;;天津津塔結構鋼板剪力墻力學性能分析[A];建筑結構(2009·增刊)——第二屆全國建筑結構技術交流會論文集[C];2009年
3 王偉棟;蔣路;;帶縫鋼板剪力墻強度與穩(wěn)定相關關系及調節(jié)措施研究[A];'2009全國鋼結構學術年會論文集[C];2009年
4 孫飛飛;王文濤;劉桂然;;開縫鋼板剪力墻的理論分析與數值模擬[A];第七屆全國現代結構工程學術研討會論文集[C];2007年
5 高輝;孫飛飛;李國強;;組合鋼板剪力墻簡化計算模型[A];第七屆全國現代結構工程學術研討會論文集[C];2007年
6 孫飛飛;劉桂然;王文濤;;鋼框架鋼板剪力墻結構的非線性靜力分析[A];第七屆全國現代結構工程學術研討會論文集[C];2007年
7 孫學水;趙偉;高長喜;尹衛(wèi)澤;張衛(wèi)東;關超;;橫向加勁鋼板剪力墻試驗和有限元研究[A];第四屆全國鋼結構工程技術交流會論文集[C];2012年
8 何歡歡;趙劍麗;趙偉;;稀疏豎向加勁鋼板剪力墻試驗研究[A];鋼結構工程研究(九)——中國鋼結構協(xié)會結構穩(wěn)定與疲勞分會第13屆(ISSF-2012)學術交流會暨教學研討會論文集[C];2012年
9 蔡克挀;朱,
本文編號:1918608
本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/1918608.html