基于5次諧波分量概率分布的故障電弧識別方法的研究
本文選題:故障電弧 + 傅里葉分析。 參考:《沈陽工業(yè)大學》2017年碩士論文
【摘要】:自19世紀人類發(fā)明了電以來,電已經(jīng)得到了很廣泛的應用。在現(xiàn)如今人們的生活中家用電器得到了大量的普及,并且還有很多新型的家用電器不斷涌現(xiàn),電氣火災的發(fā)生的頻率也越來越高、造成的危害也越來越大。這其中故障電弧是引發(fā)火災的最主要原因。傳統(tǒng)的保護電器可以對相間短路故障和接地短路故障時進行有效的保護,是針對大電流的過流保護。而串聯(lián)故障電弧的特點是電流小,溫度高,持續(xù)時間短,當發(fā)生故障電弧時,傳統(tǒng)的過流保護并不能有效的對線路進行保護。因此,對串聯(lián)故障電弧進行有效的檢測和識別具有重要的意義。目前,國內(nèi)對低壓故障電弧的研究主要停留在論文階段,幾乎沒有產(chǎn)品出現(xiàn),而國外對于故障電弧的研究要比國內(nèi)成熟的多,國外已經(jīng)有AFCI的相關產(chǎn)品并且已經(jīng)得到了應用。國內(nèi)對于故障電弧的主要研究方法主要是通過對故障電弧電流、電壓波形的特征分析,采用小波分析、傅里葉分析、自回歸參數(shù)模型以及獨立分量分析等方法分別在時域和頻域上對故障電弧進行分析。然而由于建筑電氣中具有負載多樣性的特點,有些負載正常運行時的電流特性和故障電弧電流的特性很相似。此外,很多學者對故障電弧電流特性的研究大多采用的單一負載,對混合型負載研究的較少。因此本文根據(jù)國內(nèi)外的研究成果搭建了故障電弧實驗平臺,采集了多種負載正常運行時和發(fā)生故障電弧時的電流波形。通過對采集的負載電流波形進行分析,觀察負載電流正常運行時和發(fā)生故障電弧時的電流波形的不同點。然后采用MATLAB軟件對電流波形進行傅里葉分析,提取出負載中正常運行時和發(fā)生故障電弧時的電流波形的諧波分量,對兩種情況下的諧波分量進行對比分析,找到其發(fā)生故障電弧時的特征量,然后通過spss軟件分別對其進行單參數(shù)的t-分布檢驗和k-s檢驗,確定特征量的分布類型為對數(shù)正態(tài)分布,然后確定故障電弧判據(jù)的特征量的閾值范圍。由此本文提出了一種基于5次諧波分量的故障電弧識別方法,為故障電弧的檢測提供了可靠的參考依據(jù)。
[Abstract]:Electricity has been widely used since the invention of electricity in the 19 th century. Nowadays, the household appliances have been widely used in people's lives, and there are many new types of household appliances, and the frequency of electric fires is higher and higher, and the harm caused is more and more serious. The fault arc is the main cause of the fire. The traditional protective apparatus can effectively protect the interphase short circuit fault and the ground short circuit fault, which is aimed at the overcurrent protection of high current. The characteristics of series fault arc are low current, high temperature and short duration. When fault arc occurs, the traditional over-current protection can not effectively protect the line. Therefore, it is of great significance to detect and identify the series fault arc effectively. At present, the domestic research on low-voltage fault arc mainly stays in the paper stage, almost no products appear, but the foreign research on the fault arc is much more mature than at home. There have been related products of AFCI in foreign countries and have been applied. The main research methods of fault arc in China are the characteristic analysis of fault arc current and voltage waveform, wavelet analysis and Fourier analysis. The autoregressive parameter model and independent component analysis are used to analyze the fault arc in time domain and frequency domain respectively. However, due to the diversity of loads in building electricity, the current characteristics of some loads during normal operation are similar to those of fault arc currents. In addition, many scholars study the characteristics of fault arc current mostly using a single load, and less research on hybrid load. Therefore, based on the domestic and foreign research results, a fault arc experimental platform is built, and the current waveforms of various loads during normal operation and fault arc are collected. Through the analysis of the collected load current waveform, the differences between the load current waveform and the fault arc wave are observed. Then using MATLAB software to carry on the Fourier analysis to the current waveform, extract the harmonic component of the current waveform in the normal operation of the load and the fault arc, and carry on the contrast analysis to the harmonic component of the two kinds of cases. The characteristic quantity of the fault arc is found, and the single parameter t-distribution test and k-s test are carried out by spss software, and the distribution type of the characteristic quantity is determined as logarithmic normal distribution. Then the threshold range of the characteristic quantity of the fault arc criterion is determined. In this paper, a method of fault arc identification based on the fifth harmonic component is proposed, which provides a reliable reference for fault arc detection.
【學位授予單位】:沈陽工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM501.2;TU85
【參考文獻】
相關期刊論文 前10條
1 劉曉明;徐葉飛;劉婷;余方_g;;基于電流信號短時過零率的電弧故障檢測[J];電工技術學報;2015年13期
2 蔡志遠;鮑潔秋;;電弧故障識別及保護的新技術[J];電器與能效管理技術;2014年10期
3 段培永;徐麗平;石嘉川;段晨旭;寧晨光;;基于小波系數(shù)均差值的低壓電弧故障診斷方法[J];山東建筑大學學報;2014年01期
4 劉曉明;王麗君;趙洋;王昊;;串聯(lián)故障電弧檢測方法的研究[J];電氣開關;2014年01期
5 段培永;周夫;徐麗平;;基于HCMAC神經(jīng)網(wǎng)絡的故障電弧檢測方法[J];低壓電器;2013年20期
6 馬少華;郭家穩(wěn);;低壓串聯(lián)故障電弧的識別方法[J];低壓電器;2013年09期
7 盧其威;巫海東;王肅珂;孔德煜;;基于差值均方根法的故障電弧檢測的研究[J];低壓電器;2013年01期
8 李夏河;張認成;楊建紅;;基于FastICA的低壓電弧特征分析[J];低壓電器;2012年10期
9 雍靜;桂小智;牛亮亮;曾禮強;;基于自回歸參數(shù)模型的低壓系統(tǒng)串聯(lián)電弧故障識別[J];電工技術學報;2011年08期
10 段培永;竇甜華;楊修文;郭東東;鄒苒;;基于CMAC神經(jīng)網(wǎng)絡的低壓故障電弧檢測[J];山東建筑大學學報;2011年02期
,本文編號:1900372
本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/1900372.html