天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 建筑工程論文 >

太陽能耦合空氣源熱泵一體化生活熱水系統(tǒng)的性能研究

發(fā)布時間:2018-02-27 03:04

  本文關(guān)鍵詞: 太陽能/空氣能蒸發(fā)集熱器 空氣源熱泵 太陽能 COP 節(jié)能 TRNSYS 出處:《太原理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:隨著世界經(jīng)濟(jì)快速發(fā)展,能源緊缺和環(huán)境惡化已成為全球性問題,各領(lǐng)域越來越重視對可再生能源的開發(fā)利用。制備生活熱水的能耗是我國居住建筑能源消耗的重要組成部分,隨著生活水平提高,這部分能耗還會繼續(xù)增長。直接膨脹式太陽能熱泵熱水系統(tǒng)的集熱器蒸發(fā)器部件與空氣自然對流換熱,對流換熱系數(shù)較低,所需換熱面積非常大;現(xiàn)有太陽能輔助空氣源熱泵熱水系統(tǒng)是在空氣源熱泵熱水系統(tǒng)(ASHP DHW系統(tǒng))和太陽能熱水系統(tǒng)(SDHW系統(tǒng))兩套系統(tǒng)基礎(chǔ)上組合而來,布置面積過大、布置欠靈活。為解決上述問題,本文提出太陽能/空氣能蒸發(fā)集熱器部件可同時吸收太陽能與空氣能,且該部件與空氣強(qiáng)制對流換熱,對流換熱系數(shù)高,所需換熱面積小;通過該部件構(gòu)建了太陽能/空氣能熱泵(SASIHP),進(jìn)而組成太陽能耦合空氣源熱泵一體化熱水系統(tǒng)(SASIHP DHW系統(tǒng))。SASIHP DHW系統(tǒng)占地面積小、外露管線少,且兼顧了ASHP DHW和SDHW兩個系統(tǒng)的性能優(yōu)勢,這對降低熱水能耗,促進(jìn)建筑節(jié)能具有重要實(shí)用價值和意義。為驗(yàn)證SASIHP DHW系統(tǒng)的性能優(yōu)劣,以太原地區(qū)居住建筑生活熱水用戶為研究對象,利用TRNSYS軟件搭建SASIHP DHW系統(tǒng)和ASHP DHW系統(tǒng),SDHW系統(tǒng)的仿真平臺,分析對比SASIHP DHW系統(tǒng)和其他熱水系統(tǒng)的系統(tǒng)COP、耗電量變化情況,對比其節(jié)能性。模擬結(jié)果表明:SASIHP DHW系統(tǒng)年度耗電量為646.09 kWh,較SDHW系統(tǒng)的2204.49 kWh減少70.7%,較ASHP DHW系統(tǒng)的711.07 kWh減少9.14%。SASIHP DHW系統(tǒng)ACOP(年均COP)為4.12,較ASHP DHW系統(tǒng)的3.69提高11.7%。在最有利工況7月22日,SASIHP的DCOP(日均COP)為6.02,較ASHP的4.9高出22.9%;耗電量為1.16kWh,較ASHP的1.42kWh降低18.31%。在最不利工況1月6日,SASIHP的DCOP為2.73,較ASHP的2.67高出2.25%;耗電量為2.55kWh,較ASHP的2.62k Wh降低2.67%。SASIHP系統(tǒng)性能較好,節(jié)能優(yōu)勢明顯。搭建SASIHP DHW系統(tǒng)、ASHP DHW系統(tǒng)和電熱水系統(tǒng)的實(shí)驗(yàn)裝置,測試它們在太原地區(qū)各季節(jié)典型氣象條件下的運(yùn)行性能,并驗(yàn)證模擬結(jié)果的正確性。實(shí)驗(yàn)結(jié)果表明:SASIHP DHW系統(tǒng)的耗電量較其他兩種系統(tǒng)低。夏季典型日SASIHP DHW系統(tǒng)COPH都較高,均在5.5以上,相對ASHP DHW系統(tǒng)COPH提高百分比均在20%以上。過渡季節(jié)典型日SASIHP DHW系統(tǒng)COPH雖不是特別高,但都在4.09以上,相對ASHP DHW系統(tǒng)COPH提高百分比均在12%以上。冬季典型日除1月6日低溫高濕易結(jié)霜工況SASIHP DHW系統(tǒng)COPH為2.72,相對ASHP DHW系統(tǒng)COPH提高百分比為2.25%外,其他測試日SASIHP DHW系統(tǒng)COPH都在2.9左右,COPH提高百分比均在7%以上。實(shí)驗(yàn)值與仿真模擬值誤差均在±10%以內(nèi),因此仿真模擬基本滿足要求,所建立的數(shù)學(xué)模型也是正確的。
[Abstract]:With the rapid development of world economy, energy shortage and environmental deterioration have become a global problem. More and more attention has been paid to the development and utilization of renewable energy in various fields. The energy consumption of preparing domestic hot water is an important part of energy consumption in residential buildings in China. With the improvement of living standard, this part of energy consumption will continue to increase. The collector evaporator parts of direct expansion solar heat pump hot water system naturally convection heat transfer with air, the convection heat transfer coefficient is lower, and the heat transfer area is very large. The existing solar assisted air source heat pump hot water system is based on the air source heat pump system (ASHP DHW system) and the solar water heating system (DHW system). The layout area is too large and the arrangement is not flexible. In order to solve the above problems, In this paper, it is suggested that the solar energy / air energy evaporative collector unit can absorb solar energy and air energy simultaneously, and the forced convection heat transfer between this part and air has high convection heat transfer coefficient and small heat transfer area. Through this component, a solar / air energy heat pump is constructed, and then a solar coupled air-source heat pump integrated hot water system is constructed. The SASIHP DHW system / SASIHP DHW system occupies a small area and has few exposed pipelines. It also takes into account the performance advantages of the two systems, ASHP DHW and SDHW. It is of great practical value and significance to reduce the energy consumption of hot water and promote energy saving in buildings. In order to verify the performance of SASIHP DHW system, the users of domestic hot water in residential buildings in Taiyuan area are taken as the research object. The simulation platform of SASIHP DHW system and ASHP DHW system is built by using TRNSYS software, and the power consumption of SASIHP DHW system and other hot water system is analyzed and compared. The simulation results show that the annual power consumption of the system is 646.09 kWhs, 70.7 less than the 2204.49 kWh of the SDHW system, 9.14% lower than the 711.07 kWh of the ASHP DHW system, 4.12% of the ACOP of the DHW system of the ASHP DHW system, and 11.77% higher than the 3.69% of the ASHP DHW system. In July 22nd, the DCOP (daily average COP) of SASIHP was 6.02, which was 22.9 higher than that of ASHP, and the power consumption was 1.16kWh, which was 18.31% lower than that of ASHP (1.42kWh). On January 6th, the DCOP of SASIHP was 2.73, which was 2.25 higher than that of ASHP, and the power consumption was 2.55kWh. the system performance of SASIHP was better than that of ASHP's 2.62kWh. The advantages of energy saving are obvious. The experimental devices of SASIHP DHW system and electric hot water system are set up to test their operation performance under typical meteorological conditions in different seasons in Taiyuan area. The experimental results show that the power consumption of the DHW system is lower than that of the other two systems. The COPH of the typical SASIHP DHW system in summer is higher than that of the other two systems. Compared with ASHP DHW system, the percentage increase of COPH in SASIHP DHW system is above 20%. The COPH of SASIHP DHW system is not very high, but all of them are above 4.09 in transition season. Compared with ASHP DHW system, the percentage of COPH increased by more than 12%. In the typical days of winter, the COPH of SASIHP DHW system was 2.72 in January 6th, and that of COPH in ASHP DHW system was 2.25%, except that in January 6th, the COPH of SASIHP DHW system was 2.72 and that of ASHP DHW system was 2.25%. In other test days, the COPH of SASIHP DHW system is about 2. 9 and the percentage of COPH increase is above 7%. The error between the experimental value and the simulation value is less than 鹵10%, so the simulation basically meets the requirements, and the mathematical model is also correct.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU822

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳學(xué)鋒;何欽波;徐言生;余華明;殷少有;;熱泵輔助型太陽能熱水系統(tǒng)動態(tài)性能評價研究[J];太陽能學(xué)報;2015年02期

2 高維庭;;“太陽能集熱器+空氣源熱泵熱水機(jī)”熱水系統(tǒng)問題及對策[J];暖通空調(diào);2013年S1期

3 丁鴻昌;楊前明;劉其會;呂帥;;基于多參數(shù)空氣源熱泵輔助太陽能熱水機(jī)組的控制系統(tǒng)[J];可再生能源;2013年08期

4 郭超;王芳;羅謨嬌;張振亞;汪杰;吳獲;;太陽能、空氣源熱泵熱水系統(tǒng)性能優(yōu)化實(shí)驗(yàn)研究[J];制冷學(xué)報;2013年05期

5 盧郁;于洪文;丁海成;張艷麗;劉宗明;;平板太陽能集熱器熱性能數(shù)學(xué)建模及模擬[J];濟(jì)南大學(xué)學(xué)報(自然科學(xué)版);2013年03期

6 張月紅;徐國英;張小松;;太陽能與空氣復(fù)合源熱泵熱水系統(tǒng)多模式運(yùn)行實(shí)驗(yàn)特性[J];化工學(xué)報;2010年02期

7 羅會龍;鐵燕;李明;鐘浩;;空氣源熱泵輔助加熱太陽能熱水系統(tǒng)熱性能研究[J];建筑科學(xué);2009年02期

8 江樂新;樓靜;黎恢山;蔣佳利;;并聯(lián)式太陽能熱泵熱水系統(tǒng)最佳匹配研究[J];給水排水;2008年09期

9 侯軍霞;顧敏;楊慶;高孟理;鄭明權(quán);任玉龍;;熱泵輔助太陽能集中熱水系統(tǒng)經(jīng)濟(jì)影響因素分析[J];蘭州交通大學(xué)學(xué)報;2008年01期

10 王華軍;魏晉;張文秀;趙軍;;一種基于塔式結(jié)構(gòu)的地源熱泵系統(tǒng)設(shè)計方法[J];暖通空調(diào);2006年11期

相關(guān)碩士學(xué)位論文 前3條

1 許鵬鵬;廣州地區(qū)太陽能/空氣源熱泵熱水系統(tǒng)性能研究[D];廣州大學(xué);2014年

2 劉麗軍;太陽能輔助空氣源熱泵在生活熱水工程中的應(yīng)用研究[D];哈爾濱工程大學(xué);2013年

3 劉雨曦;空氣源熱泵輔助太陽能熱水系統(tǒng)在夏熱冬冷地區(qū)的運(yùn)行模擬和應(yīng)用研究[D];重慶大學(xué);2011年

,

本文編號:1540822

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/1540822.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fb46b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com