天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 管理論文 > 證券論文 >

基于貝葉斯的期權(quán)定價方法及實證

發(fā)布時間:2018-04-28 22:05

  本文選題:貝葉斯方法 + 期權(quán)定價; 參考:《湖南大學(xué)》2013年碩士論文


【摘要】:隨著金融衍生品市場的發(fā)展,金融衍生品交易的規(guī)模不斷擴大,同時也出現(xiàn)了一些衍生品的定價方法.多年以來,有很多學(xué)者在經(jīng)典統(tǒng)計學(xué)的框架下對B-S模型進行了研究,但是同時也存在著一些不足,模型當(dāng)中的資產(chǎn)價格以及波動率的隨機性問題一直沒有得到較好的解決.考慮到貝葉斯統(tǒng)計所具有的諸多優(yōu)點,本文在貝葉斯統(tǒng)計的框架下結(jié)合B-S模型對期權(quán)的價格進行推斷.首先采用Fisher信息矩陣來確定無風(fēng)險資產(chǎn)回報率和波動率的無信息先驗,并且將資產(chǎn)價格和波動率都看成是隨機變量,然后運用無風(fēng)險資產(chǎn)回報率和波動率的無信息先驗并結(jié)合適當(dāng)?shù)乃迫缓瘮?shù),得出歐式看漲期權(quán)的先驗密度以及后驗密度函數(shù)的表達式. 本文采用中國的歐式認購權(quán)證“鞍鋼JTC1”的日收盤價格數(shù)據(jù)以及其標(biāo)的資產(chǎn)的日收盤價格數(shù)據(jù)進一步進行了實證研究.在計算方面,考慮到蒙特卡羅模擬方法(MC)整體的運算較為有效,且適用于標(biāo)的資產(chǎn)的預(yù)期收益率和波動率的函數(shù)形式比較復(fù)雜的情況,所以本文運用蒙特卡羅算法(MC)來獲得期權(quán)價格的估計值以及其它的數(shù)值特征,例如均值、方差等等,并且根據(jù)計算所得到的結(jié)果進行了分析,分析表明隨著時間的增大,期權(quán)價格密度函數(shù)的收斂性增強.然后,將計算得出的理論價格與相應(yīng)的實際價格進行比較.最后,為了衡量出權(quán)證的市場價格與理論價格的偏離程度,本文采用了偏離度進行分析研究.實證的結(jié)果表明:當(dāng)時間接近于到期日的時侯,權(quán)證的實際價格與其理論價格趨于一致,偏離度逐漸趨近于零.由此可以看出:權(quán)證標(biāo)的股票的交易者與權(quán)證的交易者對標(biāo)的股票價格的預(yù)期逐漸趨于一致.
[Abstract]:With the development of financial derivatives market, the scale of financial derivatives trading is expanding, and some derivatives pricing methods have emerged. For many years, many scholars have studied the B-S model under the framework of classical statistics, but at the same time, there are some shortcomings, the problem of asset price and volatility randomness in the model has not been solved. Considering the many advantages of Bayesian statistics, this paper inferred the price of options under the framework of Bayesian statistics combined with B-S model. Firstly, the Fisher information matrix is used to determine the non-information prior to the return and volatility of risk-free assets, and the asset price and volatility are regarded as random variables. Then the prior density and posteriori density function of European call options are obtained by using the non-information priori of risk-free return on assets and volatility and the appropriate likelihood function. This paper makes a further empirical study on the daily closing price data of the European subscription warrant "Angang JTC1" and the daily closing price data of its underlying assets. In terms of calculation, considering that the Monte Carlo simulation method / MCMC) is more effective in overall operation and is applicable to the complex function forms of the expected return and volatility of the underlying asset, So this paper uses Monte Carlo algorithm to get the estimated value of option price and other numerical characteristics, such as mean value, variance and so on, and according to the results of the calculation, the analysis shows that with the increase of time, The convergence of the option price density function is enhanced. Then, the calculated theoretical price is compared with the corresponding actual price. Finally, in order to measure the deviation degree between the market price and the theoretical price, the deviation degree is analyzed. The empirical results show that when the time is close to the maturity date, the actual price of warrant tends to be consistent with its theoretical price, and the deviation gradually approaches zero. It can be seen that the traders of the underlying stocks and the traders of warrants tend to converge on the price of the underlying stocks.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:F830.9;F224

【參考文獻】

相關(guān)期刊論文 前4條

1 蘇巖;貝葉斯統(tǒng)計的發(fā)展及其爭鳴[J];保定師范?茖W(xué)校學(xué)報;2003年02期

2 劉樂平,袁衛(wèi);現(xiàn)代貝葉斯分析與現(xiàn)代統(tǒng)計推斷[J];經(jīng)濟理論與經(jīng)濟管理;2004年06期

3 李琳;楊招軍;;阿諾德·澤爾納及其計量經(jīng)濟學(xué)思想——2002年度美國經(jīng)濟學(xué)聯(lián)合會杰出資深會員學(xué)術(shù)貢獻評介[J];經(jīng)濟學(xué)動態(tài);2003年01期

4 馬國棟;吳喜之;;基于隨機波動模型的滬深股市波動分析——以06,07年度滬深股指為例[J];數(shù)學(xué)的實踐與認識;2008年20期

,

本文編號:1817066

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/zhqtouz/1817066.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2f13f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com