基于分位數(shù)決策理論的資產(chǎn)定價研究
本文關(guān)鍵詞:基于分位數(shù)決策理論的資產(chǎn)定價研究 出處:《復(fù)旦大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 股權(quán)收益率溢價 分位數(shù)決策理論 非對稱偏好 廣義矩估計
【摘要】:資產(chǎn)定價的核心是要把未來不確定或者確定的收益通過隨機折現(xiàn)因子(SDF)將其折現(xiàn)為現(xiàn)在的價格,基于消費的資產(chǎn)定價(C-CAPM)就是用消費的效用構(gòu)造出折現(xiàn)因子,而在標(biāo)準(zhǔn)的效用函數(shù)的設(shè)定下,C-CAPM不能解釋有關(guān)資產(chǎn)定價的“股權(quán)收益率溢價之謎”、“無風(fēng)險收益率之謎”等問題。因此,一些學(xué)者從效用的設(shè)定上入手,假設(shè)人們對消費的減少更為敏感,且敏感程度超過了邊際效用遞減帶來的程度,從而采用非對稱偏好的效用函數(shù),使定價模型與市場數(shù)據(jù)較為吻合。 本文也采用非對稱偏好的效用函數(shù),從一個簡單的方向上認為人們直接關(guān)注消費的下行風(fēng)險,即消費者關(guān)注其效用的分布的某一個分位數(shù),則該分位數(shù)值可直接用于衡量消費者對風(fēng)險的厭惡程度,進而得出分位數(shù)效用決策下的資產(chǎn)定價模型。 本文第二章提出并討論了分位數(shù)效用函數(shù)下的資產(chǎn)定價模型,并對模型的有效性與標(biāo)準(zhǔn)效用模型進行了對比分析。 本文第三章分別利用美國消費數(shù)據(jù)和資本市場數(shù)據(jù),采用與分位數(shù)回歸相結(jié)合的廣義矩估計方法,對模型的參數(shù)進行了估算,進而得到了較為合理的風(fēng)險厭惡參數(shù)和跨期替代彈性參數(shù)值。由于中國的市場數(shù)據(jù)的時期較短,因此本文在增加假設(shè)條件的基礎(chǔ)上對模型進行調(diào)整后,應(yīng)用中國的消費數(shù)據(jù)和資本市場數(shù)據(jù),同樣采用分位數(shù)回歸和廣義矩估計相結(jié)合的方法進行了參數(shù)估計。并發(fā)現(xiàn)國內(nèi)市場上,風(fēng)險厭惡參數(shù)在不同的時間段有所變化,而EIS卻變化不大,以及不同類型的股權(quán)投資表現(xiàn)出了不同的風(fēng)險厭惡參數(shù)和EIS參數(shù),對此,本文做了一定的分析解釋。 本文第四章將模型應(yīng)用于動態(tài)調(diào)整中,從而在分位數(shù)效用決策框架下對風(fēng)險溢價的逆周期性、無風(fēng)險收益率的順周期性和風(fēng)險溢價的可預(yù)測性做出解釋。
[Abstract]:The core of asset pricing is to discount future uncertain or determined returns into the current price through a random discount factor (SDF). C-CAPM-based asset pricing is to construct a discounted factor with the utility of consumption, and under the setting of standard utility function. C-CAPM can not explain the "riddle of equity return premium" and "riddle of risk-free rate of return" about asset pricing. Therefore, some scholars begin with the setting of utility. Assuming that people are more sensitive to the reduction of consumption and the sensitivity is greater than that brought about by diminishing marginal utility, the utility function of asymmetric preference is used to make the pricing model more consistent with the market data. This paper also uses the utility function of asymmetric preference, from a simple direction that people pay attention to the downward risk of consumption directly, that is, consumers pay attention to a certain quantile of its utility distribution. The quantile value can be directly used to measure the risk aversion of consumers, and then the asset pricing model under the quantile utility decision can be obtained. In the second chapter, the asset pricing model under the quantile utility function is proposed and discussed, and the validity of the model is compared with the standard utility model. In the third chapter, the parameters of the model are estimated by using the generalized moment estimation method combined with quantile regression, using the American consumption data and the capital market data, respectively. Then we get more reasonable risk aversion parameter and intertemporal substitution elasticity parameter. Because the period of market data in China is relatively short, this paper adjusts the model on the basis of adding hypothetical conditions. Using Chinese consumption data and capital market data, the method of quantile regression and generalized moment estimation is used to estimate the parameters, and it is found that in the domestic market. Risk aversion parameters change in different time periods, but EIS does not change much, and different types of equity investment show different risk aversion parameters and EIS parameters. This article has made the certain analysis explanation. In chapter 4th, the model is applied to dynamic adjustment to explain the counter-periodicity of risk premium, the procyclicality of risk-free rate of return and the predictability of risk premium under the framework of quantile utility decision.
【學(xué)位授予單位】:復(fù)旦大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:F224;F830.9
【參考文獻】
相關(guān)期刊論文 前8條
1 肖俊喜,王慶石;交易成本、基于消費的資產(chǎn)定價與股權(quán)溢價之謎:來自中國股市的經(jīng)驗分析[J];管理世界;2004年12期
2 劉仁和;鄭愛明;;風(fēng)險厭惡、跨期替代與股權(quán)溢價之謎[J];上海經(jīng)濟研究;2007年08期
3 陳彥斌,周業(yè)安;行為資產(chǎn)定價理論綜述[J];經(jīng)濟研究;2004年06期
4 張耿;胡海鷗;;消費波動小于產(chǎn)出波動嗎?[J];經(jīng)濟研究;2006年11期
5 林魯東;;中國的股權(quán)溢價之謎:基于Hansen-Jagannathan方差界的實證研究[J];南方經(jīng)濟;2007年12期
6 吳建南;馬偉;;估計極端行為模型:分位數(shù)回歸方法及其實現(xiàn)與應(yīng)用[J];數(shù)理統(tǒng)計與管理;2006年05期
7 李育安;;分位數(shù)回歸及應(yīng)用簡介[J];統(tǒng)計與信息論壇;2006年03期
8 陳建寶;丁軍軍;;分位數(shù)回歸技術(shù)綜述[J];統(tǒng)計與信息論壇;2008年03期
,本文編號:1415255
本文鏈接:http://www.sikaile.net/guanlilunwen/zhqtouz/1415255.html