卷積自編碼器中粗粒度池化特征提取研究
[Abstract]:Coarse-grained pool feature extracted by convolution self-encoder (Convolutional Auto Encoder,CAE) has the invariance of rotation and translation in a certain range, so it is widely used. However, at present, CAE still mainly relies on the experience to adjust the internal parameters to obtain the coarse-grained pool characteristics that meet the requirements. In this paper, CAE is regarded as a whole, and the specific reasons that affect its performance are analyzed in terms of probability, and a general framework is constructed to adjust the main parameters in order to obtain better coarse-grained features. In this paper, we first weigh the discrimination and invariance of coarse-grained features on the pool layer from the point of view of probability, and select the appropriate convolution range and whitening parameters in CAE. Then, by analyzing the sparsity of the feature in the pool domain, the corresponding pool method is selected to obtain the coarse-grained pool feature with better separability. Experimental results on two open databases (STL-10 and CIFAR-10) show that the proposed method can guide CAE to extract better coarse-grained pooled features and perform better in multi-class classification tasks.
【作者單位】: 空軍工程大學(xué)防空反導(dǎo)學(xué)院;94691部隊;
【基金】:國家自然科學(xué)基金(No.71501184)
【分類號】:TP181;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊子煜;趙鵬;王大偉;李思昆;;關(guān)鍵循環(huán)到粗粒度可重構(gòu)體系結(jié)構(gòu)的存儲感知映射[J];國防科技大學(xué)學(xué)報;2012年06期
2 黃雅菁;高建華;;基于粗粒度切片度量的重構(gòu)定位方法[J];計算機(jī)工程;2011年11期
3 屈志毅;吳換霞;劉瑜;;粗粒度多尺度屬性約簡啟發(fā)式算法[J];昆明理工大學(xué)學(xué)報(理工版);2007年04期
4 柴玉梅;劉東昊;王黎明;;對象級粗粒度切片方法[J];計算機(jī)工程與設(shè)計;2012年03期
5 宋立國,姜玉憲;CTaiJi——新的粗粒度可配置計算結(jié)構(gòu)研究[J];微電子學(xué)與計算機(jī);2005年09期
6 李常青;唐世渭;李紅燕;;基于關(guān)聯(lián)分析的粗粒度級個性化信息挖掘[J];計算機(jī)科學(xué);2002年01期
7 孟偉,楊耀忠;油藏數(shù)值模擬軟件的粗粒度層并行計算方法[J];計算機(jī)應(yīng)用與軟件;2004年08期
8 徐佳慶;鄔貴明;竇勇;;二維DCT在粗粒度可重構(gòu)處理器上的實現(xiàn)[J];計算機(jī)工程;2008年20期
9 肖建;劉波;梅晨;朱敏;楊軍;劉雷波;魏少軍;;粗粒度部分動態(tài)可重構(gòu)的人臉檢測[J];應(yīng)用科學(xué)學(xué)報;2012年03期
10 王華;EJB環(huán)境下遠(yuǎn)程方法粗粒度調(diào)用的實現(xiàn)[J];計算機(jī)工程與科學(xué);2004年07期
相關(guān)碩士學(xué)位論文 前1條
1 楊小溪;多層次程序周期行為分析[D];復(fù)旦大學(xué);2011年
,本文編號:2224006
本文鏈接:http://www.sikaile.net/kejilunwen/zidonghuakongzhilunwen/2224006.html