天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于Hadoop的微博用戶情感分類研究與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-10-20 08:00
【摘要】:隨著微博等新型社交網(wǎng)絡(luò)服務(wù)的發(fā)展與普及,人們借助此類媒介表達(dá)觀點(diǎn)和情感變得更加靈活、自由、快速。因此,,針對(duì)微博的情感分類也顯得越來越重要,通過微博情感分類,了解用戶對(duì)政策、產(chǎn)品、輿論熱點(diǎn)等的反應(yīng),更好的對(duì)用戶自身、企業(yè)、政府等提供決策支持具有重要的意義。 在微博海量數(shù)據(jù)集上執(zhí)行情感分類任務(wù)時(shí),傳統(tǒng)的情感分類算法的擴(kuò)展性成為系統(tǒng)的瓶頸。因而,本文首先研究云計(jì)算平臺(tái)-Hadoop的主要技術(shù),分析了在Hadoop上實(shí)施情感分類的可行性。在此基礎(chǔ)上,本文針對(duì)微博文本情感特點(diǎn),通過自動(dòng)構(gòu)建和人工構(gòu)建相結(jié)合的情感語料庫,改進(jìn)基于微博情感元素和語義的特征抽取算法,并采用Hadoop技術(shù),設(shè)計(jì)了一種分布式、可擴(kuò)展、自治的微博情感分類模型。針對(duì)該模型中的情感分類問題,設(shè)計(jì)并實(shí)現(xiàn)了基于Hadoop的樸素貝葉斯情感分類算法。測(cè)試結(jié)果表明,采用基于Hadoop的樸素貝葉斯情感分類模型對(duì)海量微博數(shù)據(jù)進(jìn)行情感分類,具有良好的執(zhí)行效率和較高的擴(kuò)展性。
[Abstract]:With the development and popularity of new social networking services such as Weibo, people have become more flexible, free and quick to express their views and feelings through such media. Therefore, according to Weibo's emotional classification, it is becoming more and more important to understand the reaction of users to policies, products, public opinion hot spots, and so on, and better to the users themselves and the enterprises, through Weibo emotional classification. It is of great significance for the government to provide decision support. When carrying out emotion classification task on Weibo's massive data set, the expansibility of traditional emotion classification algorithm becomes the bottleneck of the system. Therefore, this paper first studies the main technology of cloud computing platform-Hadoop, and analyzes the feasibility of implementing emotion classification on Hadoop. On this basis, according to the emotional characteristics of Weibo text, this paper improves the feature extraction algorithm based on Weibo emotion elements and semantics through the combination of automatic and artificial construction of emotional corpus, and designs a distributed feature extraction algorithm based on Hadoop technology. Extensible, autonomous Weibo emotional classification model. Aiming at the emotion classification problem in this model, a naive Bayesian emotion classification algorithm based on Hadoop is designed and implemented. The test results show that using naive Bayesian emotion classification model based on Hadoop to classify massive Weibo data has good performance efficiency and high scalability.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP393.092;TP391.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前9條

1 胡光民;周亮;柯立新;;基于Hadoop的網(wǎng)絡(luò)日志分析系統(tǒng)研究[J];電腦知識(shí)與技術(shù);2010年22期

2 吳維;肖詩斌;;基于多特征與復(fù)合分類法的中文微博情感分析[J];北京信息科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年04期

3 劉志明;劉魯;;基于機(jī)器學(xué)習(xí)的中文微博情感分類實(shí)證研究[J];計(jì)算機(jī)工程與應(yīng)用;2012年01期

4 張玉芳;彭時(shí)名;呂佳;;基于文本分類TFIDF方法的改進(jìn)與應(yīng)用[J];計(jì)算機(jī)工程;2006年19期

5 謝麗星;周明;孫茂松;;基于層次結(jié)構(gòu)的多策略中文微博情感分析和特征抽取[J];中文信息學(xué)報(bào);2012年01期

6 龐磊;李壽山;周國棟;;基于情緒知識(shí)的中文微博情感分類方法[J];計(jì)算機(jī)工程;2012年13期

7 周勝臣;瞿文婷;石英子;施詢之;孫韻辰;;中文微博情感分析研究綜述[J];計(jì)算機(jī)應(yīng)用與軟件;2013年03期

8 張浩;尚進(jìn);;微博時(shí)代的電子政務(wù)建設(shè)與創(chuàng)新[J];中國信息界;2011年09期

9 陳彥舟;曹金璇;;基于Hadoop的微博輿情監(jiān)控系統(tǒng)[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2013年04期



本文編號(hào):2282534

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/2282534.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶58b88***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com