基于OCTEON多核處理器的網(wǎng)絡流量分類技術研究與實現(xiàn)
[Abstract]:With the rapid development of Internet technology, the need for network environment security is becoming more and more urgent. As the basic technology and important means to realize network controllability, network traffic classification technology is playing a more and more important role in network management, quality of service assurance and network security. In this paper, the existing network traffic classification techniques are studied, and the advantages and disadvantages of the methods based on port number matching, feature field analysis, transport layer behavior pattern and flow statistics feature based machine learning are summarized. In view of the advantages of network traffic classification based on machine learning algorithm, such as high accuracy and easy to be extended, random forest is selected as network traffic classification method, and an improved strategy is proposed to overcome the shortcomings of traditional stochastic forest. Finally, the improved stochastic forest strategy is implemented on OCTEON platform, and a network traffic classification system based on OCTEON multi-core processor is designed and implemented. Finally, the system testing environment is built, and the effectiveness of the system is tested. The main work includes the following aspects: 1. On the basis of fully understanding the traditional stochastic forest algorithm, according to the shortcomings of the single node model training speed and the difference in the performance of the base classifier, In this paper, an improved stochastic forest strategy is put forward from two aspects of parallelism and weighting adjustment. The hardware characteristics of OCTEON are studied, and the operation mode of OCTEON is put forward. Combining the excellent characteristics of synchronous communication mechanism and memory allocation mechanism between cores with the random forest strategy of the machine, an improved stochastic forest model, named as "random forest model", is implemented on the OCTEON platform, and a network traffic classification system based on OCTEON multi-core processor is implemented. The architecture design of the system and the detailed design and implementation of each functional module are introduced in detail. The system testing environment is built, and the classification performance of the system is tested, which verifies the excellent performance of the system in traffic classification.
【學位授予單位】:北京郵電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP332;TP393.06
【參考文獻】
相關期刊論文 前10條
1 張澤鑫;李俊;常向青;;互聯(lián)網(wǎng)流量的演化研究[J];計算機應用研究;2015年11期
2 寇曉斌;楊琴;王亮亮;;主流處理器體系結構與架構發(fā)展現(xiàn)狀綜述[J];微型機與應用;2014年16期
3 張凱;秦勃;劉其成;;基于GPU-Hadoop的并行計算框架研究與實現(xiàn)[J];計算機應用研究;2014年08期
4 周文剛;陳雷霆;Lubomir Bic;董仕;;基于半監(jiān)督的網(wǎng)絡流量分類識別算法[J];電子測量與儀器學報;2014年04期
5 彭勃;;Network Traffic分類方法比較分析[J];電腦知識與技術;2013年33期
6 李斌;;網(wǎng)絡流量分類及其現(xiàn)狀研究[J];廣西教育;2013年39期
7 趙小歡;夏靖波;連向磊;李巧麗;;基于AdaBoost的組合網(wǎng)絡流量分類方法[J];電訊技術;2013年09期
8 彭曉明;郭浩然;龐建民;;多核處理器——技術、趨勢和挑戰(zhàn)[J];計算機科學;2012年S3期
9 孔蓓蓓;唐學文;汪為漢;;一種多分類器聯(lián)合的集成網(wǎng)絡流量分類方法[J];計算機工程與應用;2013年17期
10 李國平;王勇;陶曉玲;;基于DPI和機器學習的網(wǎng)絡流量分類方法[J];桂林電子科技大學學報;2012年02期
相關博士學位論文 前1條
1 王清;集成學習中若干關鍵問題的研究[D];復旦大學;2011年
相關碩士學位論文 前10條
1 程順超;基于Calculix的多核并行分析機制研究及平臺設計與實現(xiàn)[D];廣東工業(yè)大學;2015年
2 陳嘉翼;基于小波聚類的網(wǎng)絡用戶行為分析研究[D];重慶大學;2015年
3 遇炳昕;基于OCTEON多核處理器的網(wǎng)絡數(shù)據(jù)過濾技術研究[D];北京郵電大學;2015年
4 丁瑤;基于DPI和DFI的應用層網(wǎng)絡流量監(jiān)控系統(tǒng)的研究與實現(xiàn)[D];江西理工大學;2014年
5 張瑩;基于數(shù)據(jù)流挖掘的流量識別技術研究[D];曲阜師范大學;2014年
6 劉曉東;基于組合策略的隨機森林方法研究[D];大連理工大學;2013年
7 王瑤;結合主動學習的半監(jiān)督分類算法優(yōu)化研究[D];大連理工大學;2013年
8 馬憲哲;基于集成分類器的數(shù)據(jù)流分類算法研究[D];東北大學;2012年
9 秦海兵;基于多核平臺的程序并行優(yōu)化研究[D];長安大學;2012年
10 王傳磊;基于行為特征的P2P網(wǎng)絡流量分類方法研究[D];西安電子科技大學;2012年
,本文編號:2249563
本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/2249563.html