基于RIPPER的網(wǎng)絡(luò)流量分類(lèi)方法
發(fā)布時(shí)間:2018-09-17 20:33
【摘要】:利用一種規(guī)則學(xué)習(xí)方法中的重復(fù)增量式降低錯(cuò)誤剪枝方法解決網(wǎng)絡(luò)流量分類(lèi)問(wèn)題。利用該方法能夠挖掘出網(wǎng)絡(luò)流屬性特征和類(lèi)別之間的相關(guān)關(guān)系,并將挖掘出的關(guān)系構(gòu)成分類(lèi)器用于網(wǎng)絡(luò)流量分類(lèi)。該方法能夠解決傳統(tǒng)機(jī)器學(xué)習(xí)方法在網(wǎng)絡(luò)流量中有大量的不平衡數(shù)據(jù)集時(shí),分類(lèi)錯(cuò)誤率高等問(wèn)題。實(shí)驗(yàn)證明,該方法在網(wǎng)絡(luò)流量分類(lèi)標(biāo)準(zhǔn)數(shù)據(jù)集上具有很高的分類(lèi)準(zhǔn)確率、查全率和查準(zhǔn)率。
[Abstract]:The problem of network traffic classification is solved by reducing error pruning in a rule learning method. By using this method, the correlation between the attribute characteristics of network flow and the class can be mined, and the relationship constructed by this method can be applied to the classification of network traffic. This method can solve the problem of high classification error rate when the traditional machine learning method has a large number of unbalanced data sets in network traffic. Experiments show that this method has high classification accuracy recall and precision on the standard data set of network traffic classification.
【作者單位】: 哈爾濱理工大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(60903083,61502123) 黑龍江省新世紀(jì)人才項(xiàng)目(1155-ncet-008) 黑龍江省博士后科研啟動(dòng)基金
【分類(lèi)號(hào)】:TP393.0
本文編號(hào):2247011
[Abstract]:The problem of network traffic classification is solved by reducing error pruning in a rule learning method. By using this method, the correlation between the attribute characteristics of network flow and the class can be mined, and the relationship constructed by this method can be applied to the classification of network traffic. This method can solve the problem of high classification error rate when the traditional machine learning method has a large number of unbalanced data sets in network traffic. Experiments show that this method has high classification accuracy recall and precision on the standard data set of network traffic classification.
【作者單位】: 哈爾濱理工大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(60903083,61502123) 黑龍江省新世紀(jì)人才項(xiàng)目(1155-ncet-008) 黑龍江省博士后科研啟動(dòng)基金
【分類(lèi)號(hào)】:TP393.0
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 冀汶莉;;基于RIPPER短序列匹配算法在入侵檢測(cè)中的優(yōu)化研究[J];蘭州工業(yè)高等專(zhuān)科學(xué)校學(xué)報(bào);2007年01期
相關(guān)碩士學(xué)位論文 前2條
1 張燦;基于規(guī)則的論壇爬取與抽取一體化[D];華東師范大學(xué);2011年
2 吉偉鋒;基于汽車(chē)行業(yè)的Web信息抽取研究[D];遼寧工程技術(shù)大學(xué);2007年
,本文編號(hào):2247011
本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/2247011.html
最近更新
教材專(zhuān)著