天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

大差異網(wǎng)絡(luò)異常數(shù)據(jù)特征檢測(cè)算法的仿真分析

發(fā)布時(shí)間:2018-06-11 13:42

  本文選題:模糊支持向量機(jī) + 異常數(shù)據(jù) ; 參考:《計(jì)算機(jī)仿真》2013年08期


【摘要】:網(wǎng)絡(luò)異常與普通的攻擊特征不同,沒有明顯的行為特征。尤其是大差異樣本數(shù)據(jù)集中,異常數(shù)據(jù)屬性直接差異很大,很難形成統(tǒng)一的約束規(guī)范,傳統(tǒng)的檢測(cè)算法都是假設(shè)攻擊行為特征提取的基礎(chǔ)上,對(duì)上述異常行為很難進(jìn)行判斷,會(huì)出現(xiàn)判斷多中心現(xiàn)象,造成誤警率高,提出了一種大差異數(shù)據(jù)集的網(wǎng)絡(luò)異常檢測(cè)算法。針對(duì)大差異、高維度數(shù)據(jù)屬性,運(yùn)用主成分分析方法,對(duì)網(wǎng)絡(luò)操作數(shù)據(jù)進(jìn)行降維處理,引入一種差異行為判斷的策略,對(duì)網(wǎng)絡(luò)操作數(shù)據(jù)大差異特征進(jìn)行分類處理,降低數(shù)據(jù)之間的差異性,從而保證差異行為能夠被有效的分類約束描述。實(shí)驗(yàn)結(jié)果表明,利用改進(jìn)算法能夠有效提高網(wǎng)絡(luò)中大差異異常數(shù)據(jù)檢測(cè)的準(zhǔn)確性。
[Abstract]:The network anomaly is different from the common attack feature, and has no obvious behavior characteristic. Especially in the large difference sample data set, the attribute of abnormal data is very different directly, it is difficult to form the unified constraint specification. The traditional detection algorithm is based on the assumption of the feature extraction of attack behavior, so it is difficult to judge the abnormal behavior mentioned above. A network anomaly detection algorithm based on large difference data sets is proposed in this paper because of the high false alarm rate due to the phenomenon of multi-center judgment. Aiming at the attribute of large difference and high dimension data, this paper applies the principal component analysis method to reduce the dimension of network operation data, and introduces a strategy to judge the difference behavior, and classifies the large difference characteristic of network operation data. Reduce the difference between the data, so as to ensure that the differential behavior can be effectively described by the classification constraints. Experimental results show that the improved algorithm can effectively improve the accuracy of large difference anomaly data detection in the network.
【作者單位】: 佳木斯大學(xué)信息電子技術(shù)學(xué)院;
【基金】:佳木斯市重點(diǎn)科研課題名稱(12004) 黑龍江省教育廳科學(xué)技術(shù)研究項(xiàng)目(11551490)
【分類號(hào)】:TP393.08

【參考文獻(xiàn)】

相關(guān)期刊論文 前5條

1 段群杰;張銘鈞;;基于減法聚類和自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)方法的運(yùn)動(dòng)規(guī)劃器設(shè)計(jì)[J];兵工學(xué)報(bào);2007年12期

2 高昆侖;劉建明;徐茹枝;王宇飛;李怡康;;基于支持向量機(jī)和粒子群算法的信息網(wǎng)絡(luò)安全態(tài)勢(shì)復(fù)合預(yù)測(cè)模型[J];電網(wǎng)技術(shù);2011年04期

3 李新宇;周鐵軍;;基于RBF神經(jīng)網(wǎng)絡(luò)的入侵檢測(cè)優(yōu)化算法研究[J];計(jì)算機(jī)安全;2011年04期

4 烏嵐;;基于多樣約束模型的遠(yuǎn)程教育數(shù)據(jù)庫(kù)優(yōu)化查詢算法[J];科技通報(bào);2013年01期

5 張新有;曾華q,

本文編號(hào):2005470


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/2005470.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8c64f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com