天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

網(wǎng)絡速度趨勢預測系統(tǒng)的研究與實現(xiàn)

發(fā)布時間:2018-06-09 01:36

  本文選題:速度趨勢 + SVR; 參考:《北京郵電大學》2017年碩士論文


【摘要】:隨著互聯(lián)網(wǎng)快速成熟的發(fā)展,從互聯(lián)網(wǎng)獲取信息已經(jīng)成為人們?nèi)粘I钪蝎@取信息的重要渠道之一。伴隨著2G網(wǎng)絡,3G網(wǎng)絡,4G網(wǎng)絡的逐代更新,網(wǎng)絡的訪問速度也在不斷的提升,近年來國家也發(fā)布了關于提升網(wǎng)絡速度的相關方案。在實際的應用中網(wǎng)絡的訪問會經(jīng)常隨著不同的訪問時間而呈現(xiàn)出速度上的巨大差異,甚至由于此類的原因?qū)е孪嚓P資源無法及時獲取到。因此,我們需要提供一種監(jiān)控手段對網(wǎng)絡的實際狀況進行評估和反饋,對接下來網(wǎng)絡的穩(wěn)定狀態(tài)有一個清晰的認識。目前機器學習算法被廣泛的應用到各個領域來解決分類和回歸問題,常見的機器學習算法諸如支持向量回歸(SVR)和神經(jīng)網(wǎng)絡都發(fā)展的很成熟。本文應用機器學習算法對網(wǎng)絡的速度趨勢進行預測。將機器學習算法應用到網(wǎng)絡速度趨勢預測當中一方面提供了預測的科學性和理論性,另一方面也促使了機器學習算法多分支快速的發(fā)展。本文的大工作如下:1、設計了一套網(wǎng)絡速度采集模型,該采集模型會對指定運營商提供的網(wǎng)絡速度進行采集,采集后的網(wǎng)絡速度作為趨勢預測的元數(shù)據(jù)。該采集模型對采集的功能模塊進行了分割,采用云端對采集服務器進行管理和任務的分配,一方面減小了單一服務器負責全部任務的負載,另一方面也方便了日后采集服務器數(shù)量的擴展。2、提出了針對本課題的輸入向量的選取方式,選取輸入向量的方式有很多,本課題從前兩個月的網(wǎng)絡速度數(shù)據(jù)中提取一部分作為預測第三個月網(wǎng)絡速度數(shù)據(jù)的輸入。不同的選取方式對預測的效果影響很大,在實驗對比的基礎上最終確定了六維的輸入向量。3、綜合對比了 PSO優(yōu)化的SVR和神經(jīng)網(wǎng)絡的預測效果,其中對于神經(jīng)網(wǎng)絡的選取沒有固定在特定的結(jié)構(gòu)上,而是在不同的實驗基礎上采用不同結(jié)構(gòu)的神經(jīng)網(wǎng)絡進行綜合對比,最終確定預測效果最好的神經(jīng)網(wǎng)絡作為與PSO優(yōu)化的SVR對比的參考。4、本文的主題是網(wǎng)絡速度趨勢的預測,趨勢預測本身是一個分類的問題,本文采用準確率,召回率和F1-socre作為趨勢預測的一個評估標準。除此之外,本文還采用回歸的方式對網(wǎng)絡的速度進行預測,這里提供了網(wǎng)絡速度值的參考,以MAE, MSE, MAPE作為衡量的標準,在訓練的過程中以MSE作為適應度函數(shù)。5、綜合以上實現(xiàn)了一個完整的網(wǎng)絡速度趨勢預測系統(tǒng),并在實際的數(shù)據(jù)基礎上進行了實驗驗證和性能的測試,完成了課題提出的目標。
[Abstract]:With the rapid development of the Internet, obtaining information from the Internet has become one of the important channels for people to obtain information in their daily life. With the generation update of 2G network and 3G network, the access speed of the network is improving constantly. In recent years, the country has also issued the related plan to improve the network speed. In practical applications, network access often presents a huge difference in speed with different access times, even due to such reasons, related resources can not be obtained in time. Therefore, we need to provide a monitoring means to evaluate and feedback the actual situation of the network, and have a clear understanding of the stability of the network. At present machine learning algorithms are widely used in various fields to solve classification and regression problems. Common machine learning algorithms such as support vector regression (SVR) and neural networks are developed very mature. In this paper, the machine learning algorithm is used to predict the speed trend of the network. The application of machine learning algorithm to network speed trend prediction not only provides scientific and theoretical prediction, but also promotes the rapid development of multi-branch machine learning algorithm. The main work of this paper is as follows: 1. A set of network speed acquisition model is designed. The collection model will collect the network speed provided by the designated operator and the network speed will be used as the metadata to predict the trend. The collection model divides the function module of the collection and uses the cloud to manage and distribute the tasks of the collection server. On the one hand, it reduces the load of the single server which is responsible for all the tasks. On the other hand, it also facilitates the expansion of the number of collection servers in the future. 2. The selection of input vectors for this topic is proposed. There are many ways to select input vectors. This paper extracts part of the network speed data from the first two months as input to predict the third month network speed data. Different selection methods have great influence on the effect of prediction. On the basis of experimental comparison, the six-dimensional input vector .3is finally determined, and the prediction effect of PSO optimized SVR and neural network is compared synthetically. The selection of neural network is not fixed on the specific structure, but on the basis of different experiments, the neural network with different structure is used for comprehensive comparison. Finally determine the best prediction effect of neural network as a reference compared with PSO optimized SVR. The theme of this paper is network speed trend prediction, trend prediction itself is a classification problem, this paper adopts accuracy. Recall rates and F 1-socre are used as an evaluation criterion for trend forecasting. In addition, this paper also uses regression method to predict the speed of the network, which provides a reference for the network speed value, with mae, MSE, MAPE as the measurement standard, In the process of training, MSE is taken as the fitness function. 5, a complete network speed trend prediction system is realized, and the experimental verification and performance test are carried out on the basis of the actual data, and the target proposed by the project is completed.
【學位授予單位】:北京郵電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP18;TP393.0

【參考文獻】

相關博士學位論文 前2條

1 田野;基于社會化媒體的話題檢測與傳播關鍵問題研究[D];北京郵電大學;2013年

2 韓毅;社會網(wǎng)絡分析與挖掘的若干關鍵問題研究[D];國防科學技術大學;2011年

,

本文編號:1998206

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/1998206.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶61449***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com