CDN網(wǎng)絡(luò)中動(dòng)態(tài)流媒體分發(fā)策略研究
本文選題:內(nèi)容分發(fā)網(wǎng)絡(luò) + 流媒體分發(fā)。 參考:《江西理工大學(xué)》2017年碩士論文
【摘要】:隨著互聯(lián)網(wǎng)技術(shù)和多媒體技術(shù)的發(fā)展,流媒體視頻點(diǎn)播已經(jīng)成為互聯(lián)網(wǎng)上最流行的應(yīng)用之一。因此傳統(tǒng)點(diǎn)對(duì)點(diǎn)式的流媒體視頻分發(fā)模型已經(jīng)難以滿足日益增長(zhǎng)的需求,內(nèi)容分發(fā)網(wǎng)絡(luò)(Content Delivery Networks,CDN)技術(shù)則在這樣的背景下應(yīng)運(yùn)而生。目前如何基于CDN網(wǎng)絡(luò)結(jié)構(gòu)架構(gòu)新一代流媒體視頻分發(fā)業(yè)務(wù),使其能夠應(yīng)對(duì)高并發(fā)大流量的流媒體視頻分發(fā)業(yè)務(wù)也成為了業(yè)界所研究的熱點(diǎn)問(wèn)題之一。本文首先對(duì)CDN網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)進(jìn)行了分析,并以CDN網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)作為基礎(chǔ),提出了適用于流媒體視頻分發(fā)業(yè)務(wù)的分發(fā)拓?fù)浣Y(jié)構(gòu)。針對(duì)流媒體視頻分發(fā)業(yè)務(wù)的優(yōu)化問(wèn)題,分別從費(fèi)用優(yōu)化和延遲優(yōu)化兩個(gè)角度對(duì)問(wèn)題進(jìn)行了研究。(1)對(duì)于費(fèi)用優(yōu)化問(wèn)題,CDN網(wǎng)絡(luò)中節(jié)點(diǎn)具有聚集現(xiàn)象,在網(wǎng)絡(luò)的演化過(guò)程中自然形成具有協(xié)作能力的社區(qū)結(jié)構(gòu),而且同一社區(qū)用戶往往具備共同的流媒體內(nèi)容偏好,如果CDN的每個(gè)分發(fā)節(jié)點(diǎn)可以有針對(duì)性的依據(jù)內(nèi)容的種類來(lái)進(jìn)行流媒體內(nèi)容分發(fā),將大大減少分發(fā)過(guò)程中的存儲(chǔ)費(fèi)用、傳輸費(fèi)用和復(fù)制費(fèi)用。因此提出一種基于差分演化思想的自適應(yīng)調(diào)整差分演化動(dòng)態(tài)社區(qū)發(fā)現(xiàn)算法(Improved Differential Evolution Dynamic Community Detection Algorithm,IDEDCD)有效挖掘社區(qū)結(jié)果;趧(dòng)態(tài)社區(qū)結(jié)構(gòu)的劃分結(jié)果進(jìn)而流媒體視頻內(nèi)容分發(fā),起到大大降低分發(fā)費(fèi)用的作用。(2)對(duì)于延遲優(yōu)化問(wèn)題,根據(jù)求解動(dòng)態(tài)調(diào)度問(wèn)題的方法,以最小流媒體視頻分發(fā)時(shí)間為優(yōu)化目標(biāo)建立動(dòng)態(tài)調(diào)度模型,提出一種基于改進(jìn)PSO算法求解CDN流媒體視頻分發(fā)問(wèn)題(Improved Particle Swarm Algorithm for Dynamic Scheduling Video Streaming Services on CDN,IPSO)。一方面改進(jìn)的PSO算法具有更好的延遲優(yōu)化效果;另一方面在負(fù)載較大的情況下,優(yōu)化效果仍然十分穩(wěn)定。
[Abstract]:With the development of Internet technology and multimedia technology, streaming video on demand has become one of the most popular applications on the Internet. Therefore, the traditional point-to-point video distribution model of streaming media has been difficult to meet the increasing demand, and the content Delivery networks (CDNs) technology emerges as the times require in this context. At present, how to construct a new generation of streaming media video distribution service based on CDN network structure, so that it can deal with the high concurrent and large traffic streaming video distribution service has become one of the hot issues in the industry. In this paper, the topology of CDN network is analyzed, and based on the topology structure of CDN network, a distribution topology for streaming media video distribution services is proposed. Aiming at the optimization problem of streaming media video distribution service, this paper studies the problem from two aspects of cost optimization and delay optimization respectively) for the cost optimization problem, the nodes in CDN network have aggregation phenomenon. In the evolution of the network, the community structure with cooperative ability is formed naturally, and the users of the same community often have the same preference for streaming media content. If each distribution node of CDN can distribute streaming media content according to the type of content, the cost of storage, transmission and replication will be greatly reduced. Therefore, a dynamic community discovery algorithm named improved Differential Evolution Dynamic Community Detection algorithm based on the idea of differential evolution is proposed to effectively mine the community results. Based on the partition result of dynamic community structure and streaming media video content distribution, it can greatly reduce the distribution cost.) for the delay optimization problem, according to the method of solving the dynamic scheduling problem, A dynamic scheduling model based on improved PSO algorithm is proposed to solve the video distribution problem of CDN streaming media based on the minimum video distribution time of streaming media. On the one hand, the improved PSO algorithm has better delay optimization effect; on the other hand, the optimization effect is still very stable in the case of heavy load.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP393.02
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 暏大海;李元香;龔文引;何國(guó)良;;一種求解約束優(yōu)化問(wèn)題的自適應(yīng)差分進(jìn)化算法[J];電子學(xué)報(bào);2016年10期
2 費(fèi)騰;張立毅;;現(xiàn)代智能優(yōu)化算法研究[J];信息技術(shù);2015年10期
3 張震;張雷;;基于CCN的CDN視頻內(nèi)容分發(fā)技術(shù)研究[J];軟件;2015年01期
4 劉陽(yáng);季新生;劉彩霞;;一種基于邊界節(jié)點(diǎn)識(shí)別的復(fù)雜網(wǎng)絡(luò)局部社區(qū)發(fā)現(xiàn)算法[J];電子與信息學(xué)報(bào);2014年12期
5 王莉;程學(xué)旗;;在線社會(huì)網(wǎng)絡(luò)的動(dòng)態(tài)社區(qū)發(fā)現(xiàn)及演化[J];計(jì)算機(jī)學(xué)報(bào);2015年02期
6 毛佳昕;劉奕群;張敏;馬少平;;基于用戶行為的微博用戶社會(huì)影響力分析[J];計(jì)算機(jī)學(xué)報(bào);2014年04期
7 逯少華;張曉偉;鮑承強(qiáng);李文寶;;柯西種群分布的自適應(yīng)范圍粒子群優(yōu)化算法[J];計(jì)算機(jī)應(yīng)用;2014年04期
8 劉景;;基于云計(jì)算環(huán)境的校園網(wǎng)網(wǎng)絡(luò)視頻直播設(shè)計(jì)[J];計(jì)算機(jī)應(yīng)用;2014年02期
9 徐志明;李棟;劉挺;李生;王剛;袁樹侖;;微博用戶的相似性度量及其應(yīng)用[J];計(jì)算機(jī)學(xué)報(bào);2014年01期
10 王莉;程蘇琦;沈華偉;程學(xué)旗;;在線社會(huì)網(wǎng)絡(luò)共演化的結(jié)構(gòu)推斷與預(yù)測(cè)[J];計(jì)算機(jī)研究與發(fā)展;2013年12期
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 李景濤;P2P環(huán)境下的信任模型與副本方案研究[D];復(fù)旦大學(xué);2006年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 張婷娜;復(fù)雜網(wǎng)絡(luò)模塊度的研究[D];西安理工大學(xué);2010年
,本文編號(hào):1937365
本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/1937365.html