一種基于節(jié)點影響力的局部社區(qū)發(fā)現(xiàn)算法
發(fā)布時間:2018-05-07 10:24
本文選題:社區(qū)結構 + 點權 ; 參考:《小型微型計算機系統(tǒng)》2013年09期
【摘要】:為快速準確尋找社會網(wǎng)絡中的社區(qū)結構,從節(jié)點影響力的角度出發(fā),提出一種新的社區(qū)發(fā)現(xiàn)算法.算法設計過程中引入了點權,它能夠衡量節(jié)點影響力的大小;首先根據(jù)"種子"節(jié)點的點權有選擇地進行廣度優(yōu)先搜索,使點權較大的節(jié)點不斷地影響點權較小的節(jié)點,進而得到"種子"節(jié)點所在的社區(qū)結構,然后再從已知的社區(qū)外任取一個新的"種子"節(jié)點,重復上述過程,就可得到整個網(wǎng)絡的社區(qū)結構.對算法進行優(yōu)化并應用到實際網(wǎng)絡,實驗結果驗證了算法的可行性,與經(jīng)典算法相比,該算法的準確性和計算速度都有所提高.
[Abstract]:In order to find community structure in social network quickly and accurately, a new community discovery algorithm is proposed from the point of view of node influence. In the process of algorithm design, the point weight is introduced, which can measure the influence of the node. Firstly, according to the point weight of the "seed" node, the breadth-first search is carried out selectively, so that the node with the larger point weight constantly affects the node with the smaller point weight. Then the community structure of the "seed" node is obtained, and then a new "seed" node is taken from the known community, and the community structure of the whole network can be obtained by repeating the above process. The algorithm is optimized and applied to the actual network. The experimental results verify the feasibility of the algorithm. Compared with the classical algorithm, the accuracy and computing speed of the algorithm are improved.
【作者單位】: 東北大學信息科學與工程學院;
【基金】:國家自然科學基金項目(61070162,60903159)資助 國家高新技術研究發(fā)展計劃重點項目(2007AA041201)資助 國家科技支撐計劃項目(2008BAH37B05)資助 中央高校基本科研業(yè)務費項目(N110216001)資助
【分類號】:TP393.0
【參考文獻】
相關期刊論文 前5條
1 林友芳;王天宇;唐銳;周元煒;黃厚寬;;一種有效的社會網(wǎng)絡社區(qū)發(fā)現(xiàn)模型和算法[J];計算機研究與發(fā)展;2012年02期
2 韓華;王娟;王慧;;改進的CNM算法對加權網(wǎng)絡社團結構的劃分[J];計算機工程與應用;2010年35期
3 解,
本文編號:1856556
本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/1856556.html
最近更新
教材專著