以太網(wǎng)中高精度時鐘同步協(xié)議的研究與應(yīng)用
發(fā)布時間:2018-05-02 05:37
本文選題:分布式系統(tǒng) + 時間同步; 參考:《北京郵電大學(xué)》2014年碩士論文
【摘要】:近年來,分布式系統(tǒng)技術(shù)快速發(fā)展,已經(jīng)應(yīng)用在人們生活的很多方面,由于系統(tǒng)中的各個節(jié)點(diǎn)需要協(xié)同來完成任務(wù),就需要在時間上保持一致,但是因?yàn)榉植际骄W(wǎng)絡(luò)往往規(guī)模很大,結(jié)構(gòu)復(fù)雜,節(jié)點(diǎn)間的時間同步在這些客觀因素的影響下,精度往往不高,難以滿足要求,在這種情況下,本文研究了基于NTP協(xié)議和IEEE1588協(xié)議的高精度時間同步方法。 本文首先分析了NTP協(xié)議和IEEE1588協(xié)議同步的機(jī)制和其關(guān)鍵的技術(shù),結(jié)合影響時間同步的幾個方面比較了兩者的優(yōu)缺點(diǎn),得出IEEE1588協(xié)議的優(yōu)勢。接下來進(jìn)行了整個硬件系統(tǒng)的設(shè)計,包括芯片的選型和電源、主芯片連接、和以太網(wǎng)物理層收發(fā)器連接等模塊的設(shè)計,并完成了片上系統(tǒng)和協(xié)議棧的移植。 在完成了這些平臺的搭建工作后,分成兩個部分完成同步,第一部分是NTP協(xié)議的實(shí)現(xiàn),介紹了在實(shí)現(xiàn)過程中使用到的算法,以及整個程序的流程。第二部分是IEEE1588協(xié)議的實(shí)現(xiàn),介紹了IEEE1588協(xié)議的自適應(yīng)機(jī)制,以及實(shí)現(xiàn)過程中使用到的算法,程序的流程分為三個部分,分別是:主時鐘與GPS接收器同步的程序、主時鐘同步從時鐘的程序和從時鐘與主時鐘同步的程序。 最后對整個同步系統(tǒng)進(jìn)行了測試,并對結(jié)果做了分析。 本文設(shè)計的IEEE1588協(xié)議的時間同步系統(tǒng)中的主時鐘采用的是雙時鐘源同步,分別通過NTP協(xié)議與PC同步,同時與GPS接收器同步,擴(kuò)展了系統(tǒng)的應(yīng)用范圍,而且對NTP協(xié)議和IEEE1588協(xié)議的部分算法進(jìn)行了改進(jìn)。
[Abstract]:In recent years, with the rapid development of distributed system technology, it has been applied in many aspects of people's life. Because the nodes in the system need to cooperate to complete the task, they need to keep the same time. However, due to the large scale and complex structure of distributed networks, the time synchronization between nodes is often affected by these objective factors, and the accuracy is often not high enough to meet the requirements. In this case, In this paper, a high precision time synchronization method based on NTP protocol and IEEE1588 protocol is studied. In this paper, the mechanism of synchronization between NTP protocol and IEEE1588 protocol and its key technology are analyzed, and the advantages and disadvantages of IEEE1588 protocol are compared in several aspects that affect time synchronization. The advantages of IEEE1588 protocol are obtained. Then the whole hardware system is designed, including chip selection and power supply, main chip connection, and Ethernet physical layer transceiver connection module design, and completed the on-chip system and protocol stack transplantation. After completing the construction of these platforms, it is divided into two parts to complete the synchronization. The first part is the implementation of the NTP protocol. It introduces the algorithms used in the implementation process, as well as the flow of the whole program. The second part is the implementation of IEEE1588 protocol. The adaptive mechanism of IEEE1588 protocol and the algorithm used in the implementation are introduced. The flow of the program is divided into three parts: the program of synchronizing the master clock and the GPS receiver. The program that the master clock synchronizes the slave clock and the slave clock synchronizes with the master clock. Finally, the whole synchronization system is tested and the results are analyzed. In the time synchronization system of IEEE1588 protocol designed in this paper, the main clock is synchronized by dual clock source, which synchronizes with PC and GPS receiver respectively through NTP protocol, which expands the application range of the system. Some algorithms of NTP protocol and IEEE1588 protocol are improved.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP393.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊傳順;彥廷江;;IEEE1588協(xié)議在網(wǎng)絡(luò)測控系統(tǒng)中的應(yīng)用[J];電訊技術(shù);2011年11期
2 桂本p,
本文編號:1832576
本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/1832576.html
最近更新
教材專著