天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于WA-ELM的網(wǎng)絡(luò)流量混沌預(yù)測模型

發(fā)布時(shí)間:2018-03-21 16:45

  本文選題:網(wǎng)絡(luò)流量 切入點(diǎn):極限學(xué)習(xí)機(jī) 出處:《微電子學(xué)與計(jì)算機(jī)》2017年06期  論文類型:期刊論文


【摘要】:針對當(dāng)前網(wǎng)絡(luò)流量預(yù)測模型存在的缺陷,結(jié)合網(wǎng)絡(luò)流量的混沌特性,提出了小波變換和極限學(xué)習(xí)機(jī)的網(wǎng)絡(luò)流量預(yù)測模型(WA-ELM).首先采用小波變換對網(wǎng)絡(luò)流量時(shí)間序列進(jìn)行處理,得到不同頻率特征的分量,并對各特征分量進(jìn)行相空間重構(gòu),然后采用極限學(xué)習(xí)機(jī)對網(wǎng)絡(luò)流量各分量進(jìn)行建模與預(yù)測,并對網(wǎng)絡(luò)流量分量的預(yù)測值進(jìn)行小波重構(gòu),得到原始網(wǎng)絡(luò)流量的預(yù)測值,最后采用具體網(wǎng)絡(luò)流量預(yù)測結(jié)果進(jìn)行了驗(yàn)證,并與其他模型進(jìn)行了對照測試.結(jié)果表明,WA-ELM獲得了比其他模型更高的網(wǎng)絡(luò)流量預(yù)測精度,而且網(wǎng)絡(luò)流量的預(yù)測結(jié)果更加穩(wěn)定,為網(wǎng)絡(luò)流量提供了一種新的建模工具.
[Abstract]:In view of the shortcomings of the current network traffic prediction model and the chaotic characteristics of the network traffic, a network traffic prediction model of wavelet transform and extreme learning machine is proposed. Firstly, wavelet transform is used to deal with the network traffic time series. The components of different frequency features are obtained, and each characteristic component is reconstructed in phase space. Then, the network traffic components are modeled and predicted by extreme learning machine, and the predicted value of network traffic component is reconstructed by wavelet transform. The prediction value of the original network traffic is obtained, and the results of network traffic prediction are verified by the concrete network traffic prediction results, and compared with other models, the results show that WA-ELM has higher network traffic prediction accuracy than other models. Moreover, the prediction results of network traffic are more stable, which provides a new modeling tool for network traffic.
【作者單位】: 河套學(xué)院理學(xué)系;
【分類號】:TP393.06

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳振偉;王茜;黃繼紅;;基于多神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量預(yù)測模型[J];計(jì)算機(jī)安全;2010年12期

2 于靜;王輝;;基于組合模型的網(wǎng)絡(luò)流量預(yù)測[J];計(jì)算機(jī)工程與應(yīng)用;2013年08期

3 葉苗;王勇;;基于支持向量回歸學(xué)習(xí)機(jī)的網(wǎng)絡(luò)流量預(yù)測[J];桂林工學(xué)院學(xué)報(bào);2007年02期

4 張正本;翟海慶;;基于組合模型的網(wǎng)絡(luò)流量預(yù)測[J];河南機(jī)電高等?茖W(xué)校學(xué)報(bào);2008年06期

5 周丹琪;喬國平;張泉方;;基于K-Factor GARMA模型的網(wǎng)絡(luò)流量預(yù)測[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年02期

6 姜明;吳春明;張e,

本文編號:1644701


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/1644701.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dd1eb***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com