天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

網(wǎng)絡(luò)視頻服務(wù)中用戶體驗質(zhì)量預(yù)測研究

發(fā)布時間:2018-02-10 01:51

  本文關(guān)鍵詞: 測量 網(wǎng)絡(luò)視頻服務(wù) 用戶體驗質(zhì)量 機器學習 出處:《北京交通大學》2017年碩士論文 論文類型:學位論文


【摘要】:隨著互聯(lián)網(wǎng)技術(shù)以及視頻多媒體技術(shù)的不斷發(fā)展,網(wǎng)絡(luò)視頻作為一種重要的休閑娛樂方式,受到了人們的一致追捧。思科公布的互聯(lián)網(wǎng)預(yù)測報告顯示:2015年網(wǎng)絡(luò)視頻流量占全部互聯(lián)網(wǎng)流量的70%,預(yù)計到2020年所有消費的網(wǎng)絡(luò)流量中的視頻流量將占到82%,其中移動視頻數(shù)據(jù)流量將占總網(wǎng)絡(luò)流量的50%。如此龐大的視頻數(shù)據(jù)流量對當前的視頻服務(wù),特別是移動端視頻服務(wù),帶來了極大的挑戰(zhàn)。與此同時,視頻用戶對視頻觀看質(zhì)量也提出了更高層次的要求:高視頻分辨率、低啟動時延、低緩沖率,追求更高的用戶體驗質(zhì)量(Quality of Experience,QoE)。因此,研究如何精準預(yù)測網(wǎng)絡(luò)視頻服務(wù)中的用戶體驗質(zhì)量,近而提升視頻用戶體驗質(zhì)量,具有很大的理論價值和商業(yè)應(yīng)用價值,F(xiàn)有的關(guān)于用戶體驗質(zhì)量的研究工作中,大多是研究視頻用戶觀看行為以及視頻質(zhì)量影響因素,或者提出一些復(fù)雜的控制平臺系統(tǒng)來優(yōu)化網(wǎng)絡(luò)視頻資源傳輸效率,或者研究復(fù)雜的視頻編碼,來提升用戶體驗質(zhì)量。本文擬運用機器學習算法,構(gòu)建簡單、易部署的基于用戶終端的QoE模型,提升用戶體驗質(zhì)量。本文的具體貢獻主要有如下四個方面。(1)詳細分析了 PPTV視頻用戶接入日志數(shù)據(jù)集,發(fā)現(xiàn):1)起始緩沖時長比緩沖總時長更需要針對性的優(yōu)化;2)緩沖次數(shù)與用戶有效觀看時間比的相關(guān)性最大。在此基礎(chǔ)上設(shè)計了一種高性能的基于隨機森林算法的QoE映射模型,在預(yù)測用戶體驗質(zhì)量不好時的F1值達到0.77,并且起始緩沖時長和緩沖次數(shù)對模型預(yù)測效果的影響較大。(2)開發(fā)了一整套適用于LTE網(wǎng)絡(luò)環(huán)境下DASH視頻質(zhì)量研究的實驗平臺。具體說來,在阿里云服務(wù)器上搭建了 DASH視頻服務(wù)器,并部署了 MongoDB數(shù)據(jù)庫用于測量數(shù)據(jù)的持久化存儲;開發(fā)了 Androidapp應(yīng)用用于采集LTE網(wǎng)絡(luò)質(zhì)量參數(shù),修改dashjs客戶端源碼來采集DASH視頻客戶端播放信息。(3)通過對實驗測量數(shù)據(jù)的研究分析發(fā)現(xiàn):1)當緩沖區(qū)長度低于0.5秒鐘時,視頻將會出現(xiàn)卡頓;2)當前LTE網(wǎng)絡(luò)下的DASH視頻用戶體驗質(zhì)量的主要問題在于往返時間(RTT)。(4)提出了一種基于"時間窗口"的預(yù)測方法,設(shè)計了兩種基于隨機森林算法的QoE模型,在預(yù)測用戶體驗質(zhì)量不好時的F1值達到0.87。并且,最佳的間隔時間窗口值:28秒,最佳的歷史時間窗口值為10秒到18秒。
[Abstract]:With the continuous development of Internet technology and video multimedia technology, network video as an important way of leisure and entertainment, In 2015, network video traffic accounted for 70 percent of all Internet traffic, and it is expected that by 2020, video traffic will account for 82 percent of all network traffic consumed. Moving video data traffic will account for 50 percent of the total network traffic. In particular, the mobile video service brings great challenges. At the same time, video users also put forward higher quality requirements for video viewing: high video resolution, low startup delay, low buffering rate. Therefore, research on how to accurately predict the quality of user experience in online video services, and improve the quality of video user experience, It has great theoretical value and commercial application value. Most of the existing research work on the quality of user experience is to study the viewing behavior of video users and the influencing factors of video quality. Or some complex control platform systems are proposed to optimize the transmission efficiency of network video resources, or to study complex video coding to improve the quality of user experience. The QoE model based on user terminal is easy to deploy to improve the quality of user experience. The specific contributions of this paper are as follows: (1) the PPTV video user access log data set is analyzed in detail. It is found that the initial buffer time is more important than the total buffer time to optimize the buffer times. The correlation between the buffer times and the effective viewing time ratio is the greatest. Based on this, a high performance QoE mapping model based on stochastic forest algorithm is designed. The F1 value is 0.77 when the user experience quality is not good, and the effect of the initial buffer time and buffer times on the model prediction effect is great.) A set of experimental platforms suitable for the research of DASH video quality in LTE network environment are developed. DASH video server was built on Ali cloud server, and MongoDB database was deployed for persistent storage of measurement data. Androidapp application was developed to collect LTE network quality parameters. Modify the dashjs client source code to collect the DASH video client playback information.) by analyzing the experimental data, we find that: 1) when the buffer length is less than 0.5 seconds, The main problem of the DASH video user experience quality under the current LTE network is that the round trip time is RTT. 4) A prediction method based on "time window" is proposed, and two QoE models based on stochastic forest algorithm are designed. The F1 value is 0.87 when the user experience quality is not good. Moreover, the optimal interval window value is: 28 seconds, and the best historical time window value is from 10 seconds to 18 seconds.
【學位授予單位】:北京交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP393.09;TN919.8

【參考文獻】

相關(guān)期刊論文 前2條

1 林闖;胡杰;孔祥震;;用戶體驗質(zhì)量(QoE)的模型與評價方法綜述[J];計算機學報;2012年01期

2 孫知信;陳亞當;任志廣;;基于P2P流媒體直播系統(tǒng)的數(shù)據(jù)傳輸策略[J];通信學報;2011年06期

,

本文編號:1499376

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/1499376.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a4e63***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com