基于BP神經(jīng)網(wǎng)絡(luò)的股票價(jià)格預(yù)測(cè)輸入變量選擇研究
[Abstract]:The stock market is a highly complex nonlinear system. The change of stock market has its own regularity, and it is influenced by many factors such as politics, economy, investment psychology and so on. The traditional method of forecasting based on mathematical statistics is difficult to describe it effectively, but has the ability to solve non linear problems, network learning ability and system fitting. The artificial neural network of force can realize the image of the nonlinear relation between variables in any precision, and approximate the function of the change of the stock price with time, so as to simulate and learn the stock market.
So far, many foreign scholars have set up a number of corresponding prediction models for different stock markets, give a good prediction method, and have achieved good prediction results. However, because China's securities market has only more than 20 years of development history, it is still very imperfect, the popular and effective foreign market experience and methods are not. The.BP neural network in Chinese stock market is a kind of common stock price prediction method, which has strong non-linear fitting ability. Many scholars have carried on deep research in this field. However, because the stock market can choose too many predictive parameters to make the internal operation of BP neural network chaotic, and often leads to too much computation. Therefore, on the basis of research at home and abroad, this paper puts forward a BP neural network input variable selection method for stock price prediction. Firstly, the principal component analysis method is used to reduce the dimension of the input vector. Then the information structure of the input vector is adjusted by the combination of AHP and Delphi method; finally, 2 The simulation experiment of the input vector group obtained by the method is compared. The results show that the improved principal component vector group obtained by the integrated principal component analysis method and the analytic hierarchy process (AHP) method by Delphy Fa has good performance for the stock prediction of BP neural network.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:F224;F832.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁曉東;神經(jīng)網(wǎng)絡(luò)在股票價(jià)格預(yù)測(cè)中的應(yīng)用[J];北京機(jī)械工業(yè)學(xué)院學(xué)報(bào);2002年03期
2 韓永學(xué);特爾菲法與“拿來主義”[J];哈爾濱師專學(xué)報(bào);2000年02期
3 楊啟文,韓玉兵;BP自適應(yīng)學(xué)習(xí)率設(shè)計(jì)[J];河海大學(xué)常州分校學(xué)報(bào);2001年03期
4 李松;劉力軍;谷晨;;混沌時(shí)間序列預(yù)測(cè)模型的比較研究[J];計(jì)算機(jī)工程與應(yīng)用;2009年32期
5 楊奎河;王寶樹;趙玲玲;;基于神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)模型中輸入變量的選擇[J];計(jì)算機(jī)科學(xué);2003年08期
6 朱群雄;郎娜;;工業(yè)軟測(cè)量模型結(jié)構(gòu)與輸入變量選擇的研究[J];控制工程;2011年03期
7 魏海坤,徐嗣鑫,宋文忠;神經(jīng)網(wǎng)絡(luò)的泛化理論和泛化方法[J];自動(dòng)化學(xué)報(bào);2001年06期
8 吳振坤;迎接知識(shí)經(jīng)濟(jì)時(shí)代的挑戰(zhàn)[J];施工企業(yè)管理;1999年11期
9 高仁祥,張世英,劉豹;基于神經(jīng)網(wǎng)絡(luò)的變量選擇方法[J];系統(tǒng)工程學(xué)報(bào);1998年02期
10 郭剛,史忠科,戴冠中;基于混沌理論進(jìn)行股票市場(chǎng)的多步預(yù)測(cè)[J];信息與控制;2000年02期
相關(guān)博士學(xué)位論文 前1條
1 殷光偉;中國(guó)股票市場(chǎng)預(yù)測(cè)方法的研究[D];天津大學(xué);2003年
相關(guān)碩士學(xué)位論文 前2條
1 翟曼;基于PSO優(yōu)化混沌BP神經(jīng)網(wǎng)絡(luò)的股票指數(shù)預(yù)測(cè)模型研究[D];河北大學(xué);2011年
2 溫渤;基于人工神經(jīng)元網(wǎng)絡(luò)的股票分析及其邏輯設(shè)計(jì)[D];哈爾濱工程大學(xué);2003年
本文編號(hào):2169358
本文鏈接:http://www.sikaile.net/guanlilunwen/huobilw/2169358.html