股票的交易數(shù)據(jù)擬合與聚類研究
本文關鍵詞: 股票 函數(shù)性數(shù)據(jù) 數(shù)據(jù)擬合 聚類 出處:《哈爾濱工業(yè)大學》2012年碩士論文 論文類型:學位論文
【摘要】:隨著中國股票市場的迅速發(fā)展,市場的規(guī)范化程度不斷提高,股票品種也有了向多元多層次化發(fā)展的趨勢,吸引了越來越多投資者的目光。為減少投資風險,獲得豐厚的利潤回報,理智的股票投資者將會更加重視投資對象的選擇。表達股票數(shù)據(jù)的真實意義對投資者來說是關鍵,而股票交易數(shù)據(jù)包含了大量的信息,對股票交易數(shù)據(jù)的分析就顯得特別重要。 股票交易數(shù)據(jù)的表現(xiàn)受很多因素的影響,包含信息量較大,總體上體現(xiàn)出函數(shù)性特征,采用傳統(tǒng)的時間序列數(shù)據(jù)分析方法受到很多局限。為此,根據(jù)股票交易數(shù)據(jù)的函數(shù)性特征,借助函數(shù)性數(shù)據(jù)分析方法,對股票交易數(shù)據(jù)進行了有針對性的分析。主要內容是基于股票交易數(shù)據(jù)的函數(shù)性特征,對股票交易數(shù)據(jù)進行預處理和曲線擬合,,使得原始數(shù)據(jù)“抽象化”,進而得到統(tǒng)一的函數(shù)系數(shù)矩陣,再借助系數(shù)矩陣對反映股票特性的函數(shù)進行聚類,得出相應的股票聚類結果,并對結果進行了合理解釋。 將函數(shù)性數(shù)據(jù)分析方法應用于分析研究函數(shù)性數(shù)據(jù)中,改善了傳統(tǒng)分析方法對數(shù)據(jù)要求的約束,這樣不僅增加了可分析數(shù)據(jù)的范圍,而且擴大了函數(shù)性數(shù)據(jù)分析方法的應用領域。將該方法實際應用于現(xiàn)實股票交易數(shù)據(jù)的擬合和聚類分析中,得到了非常理想的結果,表明了方法的有效性,該方法也能夠為投資者提供很好的決策依據(jù)。
[Abstract]:With the rapid development of China's stock market, the standardization of the market is constantly improving, and the stock varieties have the trend of multi-level development, attracting the attention of more and more investors in order to reduce the investment risk. In order to get a good profit return, rational stock investors will pay more attention to the choice of investment object. Expressing the true meaning of stock data is key to investors, and stock trading data contains a lot of information. The analysis of stock trading data is particularly important. The performance of stock trading data is affected by many factors, including a large amount of information, which generally reflects the functional characteristics, and the traditional time series data analysis method is limited. According to the functional characteristics of the stock trading data and with the help of the functional data analysis method, the paper makes a targeted analysis of the stock trading data. The main content is based on the functional characteristics of the stock trading data. The preprocessing and curve fitting of the stock trading data make the original data "abstract", and then get the unified function coefficient matrix, and then cluster the functions reflecting the stock characteristics with the help of the coefficient matrix. The corresponding stock clustering results are obtained, and the results are explained reasonably. The functional data analysis method is applied to analyze and study the functional data, which improves the constraint of the traditional analysis method on the data requirement, which not only increases the scope of analytical data. Moreover, the application field of the functional data analysis method is expanded. The method is applied to the real stock trading data fitting and clustering analysis, and the very ideal result is obtained, which shows the validity of the method. This method can also provide investors with a good basis for decision-making.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:F832.51;F224
【參考文獻】
相關期刊論文 前10條
1 周焯華,陳文南,張宗益;聚類分析在證券投資中的應用[J];重慶大學學報(自然科學版);2002年07期
2 王麗敏;梁艷春;韓旭明;時小虎;李明;;多獲勝節(jié)點SOM及其在股票分析中的應用[J];計算機研究與發(fā)展;2008年09期
3 王小華;樓佳;;基于迭代分類的聚類結果改進方法[J];計算機工程;2010年13期
4 陶曉懿;;區(qū)域R&D資源投入和產(chǎn)出差異聚類及趨勢分析[J];科技進步與對策;2010年17期
5 徐志超;梁艷春;時小虎;;基于SOM網(wǎng)絡的股票聚類分析方法[J];計算機工程與設計;2008年09期
6 韓丹;何先平;鄭蟬娟;;基函數(shù)在函數(shù)性數(shù)據(jù)擬合中的應用[J];太原師范學院學報(自然科學版);2008年01期
7 劉興;;取整函數(shù)y=[x]性質及應用小議[J];數(shù)學教學通訊;2009年15期
8 朱建平;徐俊偉;樂燕波;;函數(shù)數(shù)據(jù)挖掘及其在中國消費函數(shù)分析中的應用[J];統(tǒng)計與信息論壇;2008年03期
9 嚴明義;杜鵬;;中國消費價格指數(shù)季節(jié)變動的函數(shù)性數(shù)據(jù)分析[J];統(tǒng)計與信息論壇;2010年08期
10 嚴明義;;網(wǎng)上拍賣競買者出價水平的動態(tài)演變模式研究[J];統(tǒng)計研究;2010年03期
本文編號:1483987
本文鏈接:http://www.sikaile.net/guanlilunwen/huobilw/1483987.html