天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 供應(yīng)鏈論文 >

考慮共同配送和能耗的車(chē)輛路徑問(wèn)題優(yōu)化研究

發(fā)布時(shí)間:2018-08-25 09:01
【摘要】:共同配送是配送發(fā)展的重要趨勢(shì)之一,其價(jià)值在于通過(guò)合作、資源共享降低物流成本、提高物流效率,同時(shí)削減在途運(yùn)行車(chē)輛,緩解城市交通壓力,節(jié)約社會(huì)資源、減輕環(huán)境污染。由于其存在的重要價(jià)值,共同配送在發(fā)達(dá)國(guó)家(如德國(guó)、日本)得到了廣泛的實(shí)踐應(yīng)用,在我國(guó),共同配送尚處于起步階段,隨著市場(chǎng)經(jīng)濟(jì)的發(fā)展,物流環(huán)境的不斷成熟以及物流成本、交通擁擠帶來(lái)的持續(xù)壓力,將促使共同配送在我國(guó)迅速發(fā)展。然而,共同配送企業(yè)在實(shí)際運(yùn)作中,存在著一些問(wèn)題亟待解決,例如,如何整合現(xiàn)有配送資源,如何降低配送車(chē)輛能耗,發(fā)揮更大的效益?本文首先分析了共同配送的運(yùn)作模式,通過(guò)對(duì)現(xiàn)有模式的分析得出共同配送的資源整合主要體現(xiàn)為三個(gè)方面:客戶資源、配送車(chē)輛資源和配送點(diǎn)資源,并在此基礎(chǔ)上建立了幾類(lèi)共同配送策略。其次,根據(jù)客戶資源共享的情況,考慮區(qū)域經(jīng)濟(jì)一體化過(guò)程中,供應(yīng)鏈的供應(yīng)企業(yè)或零售連鎖企業(yè)等,當(dāng)其公司發(fā)展到一定的規(guī)模后,存在有多個(gè)配送中心實(shí)行共同配送的情況,以滿足客戶差異性的商品需求,和日漸小批量、多批次的配送需求,需要考慮基于客戶差異性的情況來(lái)整合客戶資源,提高配送效率和服務(wù)水平。文中構(gòu)建了客戶分組條件下的多配送點(diǎn)車(chē)輛路徑模型,以配送距離最短為優(yōu)化目標(biāo),在遺傳算法的基礎(chǔ)上進(jìn)行算法設(shè)計(jì),通過(guò)設(shè)計(jì)插入變異改變配送中心客戶群數(shù)量,提高路徑搜索的廣度,并將改進(jìn)算法與傳統(tǒng)算法在運(yùn)行結(jié)果上進(jìn)行了對(duì)比分析,并進(jìn)一步分析了不同種群下的尋優(yōu)過(guò)程。再次,根據(jù)配送車(chē)輛共享的情況,考慮實(shí)際配送運(yùn)作中,客戶需求的變化性,配送車(chē)輛在完成每階段最后一個(gè)客戶點(diǎn)的配送服務(wù)后,無(wú)需回到出發(fā)車(chē)場(chǎng),可選擇就近車(chē)場(chǎng)?炕蛞罁(jù)資源共享降低成本的原則,將車(chē)輛?吭陂_(kāi)放的協(xié)同企業(yè)車(chē)場(chǎng)。每次配送階段均為獨(dú)立的,隨著客戶需求的變化,配送車(chē)場(chǎng)的配送車(chē)輛隨著不斷變化的配送需求而調(diào)整車(chē)場(chǎng)車(chē)輛數(shù)。文中構(gòu)建了車(chē)場(chǎng)開(kāi)放條件下的多配送點(diǎn)車(chē)輛路徑模型,以配送距離最短為優(yōu)化目標(biāo),在粒子群算法的基礎(chǔ)上進(jìn)行了算法設(shè)計(jì),通過(guò)對(duì)粒子更新進(jìn)行設(shè)計(jì),提高算法的搜算廣度,避免陷入局部最優(yōu),并將改進(jìn)算法與傳統(tǒng)粒子群算法進(jìn)行對(duì)比分析。最后,討論配送車(chē)輛在實(shí)際的配送行駛中,由于配送距離的變化,配送時(shí)間的約束,以及實(shí)際配送速度與城市車(chē)輛限速等不同情況下的車(chē)輛行駛能耗分析,并進(jìn)行了仿真測(cè)試,為城市配送車(chē)輛在距離、時(shí)間、速度等不同條件下,選擇節(jié)能低碳的配送車(chē)輛行駛模式提供參考依據(jù)。
[Abstract]:Joint distribution is one of the important trends in the development of distribution. Its value lies in reducing logistics cost and improving logistics efficiency through cooperation, resource sharing, and at the same time reducing the running vehicles on the way, relieving the pressure of urban traffic and saving social resources. Reduce environmental pollution. Because of its important value, joint distribution has been widely used in developed countries (such as Germany, Japan). In China, joint distribution is still in its infancy, with the development of market economy. The maturation of logistics environment and the continuous pressure of logistics cost and traffic congestion will promote the rapid development of joint distribution in China. However, in the actual operation of joint distribution enterprises, there are some problems to be solved. For example, how to integrate the existing distribution resources, how to reduce the energy consumption of distribution vehicles, and how to play a greater benefit? This paper first analyzes the operation mode of joint distribution, and through the analysis of the existing model, it is concluded that the integration of common distribution resources is mainly reflected in three aspects: customer resources, distribution vehicle resources and distribution point resources. On this basis, several common distribution strategies are established. Secondly, according to the situation of customer resource sharing, considering the process of regional economic integration, supply enterprises or retail chain enterprises in the supply chain, when their companies develop to a certain scale, There are many distribution centers to implement joint distribution to meet the needs of different customers, and smaller and more batches of distribution needs, need to consider the situation based on customer differences to integrate customer resources, Improve delivery efficiency and service level. In this paper, a multi-point vehicle routing model under the condition of customer grouping is constructed. With the shortest distribution distance as the optimization goal, the algorithm is designed on the basis of genetic algorithm, and the number of customers in distribution center is changed by inserting variation. The improved algorithm is compared with the traditional algorithm in the running results, and the optimization process under different populations is further analyzed. Thirdly, according to the situation of distribution vehicle sharing, considering the variability of customer demand in actual distribution operation, the distribution vehicle does not need to return to the departure yard after completing the distribution service of the last customer point in each stage. According to the principle of reducing the cost of resource sharing, the vehicle can be parked in the open cooperative enterprise yard. Each distribution stage is independent, with the change of customer demand, the distribution vehicle of the distribution yard adjusts the number of vehicles with the changing distribution demand. In this paper, the vehicle routing model of multi-distribution points under the condition of open vehicle yard is constructed. With the shortest distribution distance as the optimization goal, the algorithm is designed on the basis of particle swarm optimization algorithm, and the search breadth of the algorithm is improved by designing the particle update. To avoid falling into local optimum, the improved algorithm is compared with the traditional particle swarm optimization algorithm. Finally, the paper discusses the energy consumption analysis of distribution vehicles under different conditions, such as the variation of distribution distance, the constraint of distribution time, and the actual distribution speed and the speed limit of urban vehicles, and carries out simulation tests. This paper provides a reference for the choice of energy saving and low carbon distribution vehicle driving mode under different conditions such as distance, time, speed and so on.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:F252

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 宋國(guó)華;;道路交通油耗與排放的微觀測(cè)算模型綜述[J];交通節(jié)能與環(huán)保;2010年01期

2 張濤,王夢(mèng)光;遺傳算法和3-opt結(jié)合求解帶有能力約束的VRP[J];東北大學(xué)學(xué)報(bào);1999年03期

3 張軍;唐加福;潘震東;;求解多車(chē)場(chǎng)車(chē)輛路徑問(wèn)題的分散搜索算法[J];系統(tǒng)工程;2009年06期

4 林巖,胡祥培,王旭茵;物流系統(tǒng)優(yōu)化中的定位——運(yùn)輸路線安排問(wèn)題(LRP)研究評(píng)述[J];管理工程學(xué)報(bào);2004年04期

5 劉云忠,宣慧玉;車(chē)輛路徑問(wèn)題的模型及算法研究綜述[J];管理工程學(xué)報(bào);2005年01期

6 霍紅;賀克斌;王歧東;;機(jī)動(dòng)車(chē)污染排放模型研究綜述[J];環(huán)境污染與防治;2006年07期

7 王征;王建軍;楊文超;;顧客時(shí)間窗變化的多車(chē)場(chǎng)車(chē)輛調(diào)度干擾管理模型研究[J];管理科學(xué);2010年03期

8 汪壽陽(yáng),趙秋紅,夏國(guó)平;集成物流管理系統(tǒng)中定位—運(yùn)輸路線安排問(wèn)題的研究[J];管理科學(xué)學(xué)報(bào);2000年02期

9 潘震東;唐加福;韓毅;;帶貨物權(quán)重的車(chē)輛路徑問(wèn)題及遺傳算法[J];管理科學(xué)學(xué)報(bào);2007年03期

10 鄒彤,李寧,孫德寶,李菁;多車(chē)場(chǎng)車(chē)輛路徑問(wèn)題的遺傳算法[J];計(jì)算機(jī)工程與應(yīng)用;2004年21期

相關(guān)博士學(xué)位論文 前10條

1 彭北青;第三方物流配送車(chē)輛路徑問(wèn)題模型及算法研究[D];華中科技大學(xué);2009年

2 劉冉;面向協(xié)同運(yùn)輸?shù)能?chē)輛路徑問(wèn)題優(yōu)化算法研究[D];上海交通大學(xué);2011年

3 王君;不確定因素下車(chē)輛路徑問(wèn)題建模及優(yōu)化方法研究[D];天津大學(xué);2012年

4 謝秉磊;隨機(jī)車(chē)輛路徑問(wèn)題研究[D];西南交通大學(xué);2003年

5 符卓;開(kāi)放式車(chē)輛路徑問(wèn)題及其應(yīng)用研究[D];中南大學(xué);2003年

6 張建勇;模糊信息條件下車(chē)輛路徑問(wèn)題研究[D];西南交通大學(xué);2004年

7 張楊;不確定環(huán)境下城市交通中車(chē)輛路徑選擇研究[D];西南交通大學(xué);2006年

8 劉興;基于協(xié)作的車(chē)輛路徑問(wèn)題研究[D];天津大學(xué);2006年

9 姜昌華;遺傳算法在物流系統(tǒng)優(yōu)化中的應(yīng)用研究[D];華東師范大學(xué);2007年

10 王征;車(chē)輛路徑問(wèn)題的知識(shí)表示及智能建模方法研究[D];大連理工大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 張俊;多車(chē)場(chǎng)帶時(shí)間窗車(chē)輛路徑問(wèn)題的模型和算法[D];大連理工大學(xué);2010年

2 張文靜;協(xié)同粒子群算法及其在多車(chē)場(chǎng)路徑優(yōu)化問(wèn)題中的應(yīng)用[D];華東師范大學(xué);2011年

3 蔡景穩(wěn);遺傳算法在多車(chē)場(chǎng)車(chē)輛路徑問(wèn)題中的應(yīng)用研究[D];浙江師范大學(xué);2011年

4 李寧;基于綠色物流思想的配送問(wèn)題研究[D];大連海事大學(xué);2004年

5 傅忠寧;物流共同配送模式與實(shí)施對(duì)策研究[D];吉林大學(xué);2005年

6 孫爽;供應(yīng)鏈中零售商采購(gòu)與促銷(xiāo)的投資協(xié)調(diào)問(wèn)題研究[D];東北大學(xué);2005年

7 楊元峰;基于模擬退火遺傳算法的多車(chē)場(chǎng)車(chē)輛調(diào)度問(wèn)題的研究與應(yīng)用[D];蘇州大學(xué);2006年

8 陳冬;基于粒子群優(yōu)化算法的無(wú)人機(jī)航跡規(guī)劃[D];西北工業(yè)大學(xué);2007年

9 史玉敏;物流配送環(huán)節(jié)中車(chē)輛路徑問(wèn)題(VRP)的研究[D];山東師范大學(xué);2007年

10 鄧欣;基于遺傳算法的多車(chē)場(chǎng)車(chē)輛路徑問(wèn)題研究[D];重慶大學(xué);2007年



本文編號(hào):2202403

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/gongyinglianguanli/2202403.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶cbacc***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com