基于層次化混合模型的高分辨率遙感影像分割方法
發(fā)布時(shí)間:2021-07-30 00:19
高分辨率遙感影像具有同一目標(biāo)區(qū)域內(nèi)像素異質(zhì)性增強(qiáng)、不同目標(biāo)區(qū)域間像素同質(zhì)性增強(qiáng)等特征,這給其分割方法的設(shè)計(jì)帶來(lái)了困難和挑戰(zhàn)。在統(tǒng)計(jì)意義上,這些特征使得高分辨率遙感影像中各目標(biāo)區(qū)域內(nèi)像素光譜測(cè)度統(tǒng)計(jì)分布主要呈現(xiàn)出非對(duì)稱、重尾和多峰等復(fù)雜統(tǒng)計(jì)特性,準(zhǔn)確建模高分辨率遙感影像內(nèi)像素光譜測(cè)度統(tǒng)計(jì)分布是獲得高質(zhì)量影像分割結(jié)果的有效途徑之一,而傳統(tǒng)混合模型難以達(dá)到準(zhǔn)確建模像素光譜測(cè)度復(fù)雜統(tǒng)計(jì)分布的要求。為此,論文提出一種層次化混合模型用于建模復(fù)雜的統(tǒng)計(jì)分布,并依此提出高分辨率遙感影像分割方法,主要研究?jī)?nèi)容如下。(1)提出一種具有層次性結(jié)構(gòu)的混合模型,稱為層次化混合模型,用于解決高分辨率遙感影像內(nèi)像素光譜測(cè)度復(fù)雜統(tǒng)計(jì)分布的建模問(wèn)題。層次化混合模型定義為若干個(gè)組份概率分布加權(quán)和,其包括兩層結(jié)構(gòu)。層次化混合模型組份構(gòu)成了第一層結(jié)構(gòu),其定義為若干個(gè)分量概率分布加權(quán)和,用于建模影像各目標(biāo)區(qū)域內(nèi)像素光譜測(cè)度復(fù)雜統(tǒng)計(jì)分布;層次化混合模型分量構(gòu)成了第二層結(jié)構(gòu),由同一已知概率分布定義,用于建模目標(biāo)區(qū)域中子區(qū)域內(nèi)像素光譜測(cè)度的統(tǒng)計(jì)分布。通過(guò)準(zhǔn)確建模像素光譜測(cè)度的統(tǒng)計(jì)分布,層次化混合模型可有效地利用影像內(nèi)光譜信息,進(jìn)而提...
【文章來(lái)源】:遼寧工程技術(shù)大學(xué)遼寧省
【文章頁(yè)數(shù)】:156 頁(yè)
【學(xué)位級(jí)別】:博士
【部分圖文】:
FMM組份的概率分布
基于層次化混合模型的高分辨率遙感影像分割方法20(a)GMM(b)SMM(c)GaMM圖2.2FMMs的概率分布Figure2.2ProbabilitydistributionsofFMMs2.2馬爾可夫隨機(jī)場(chǎng)2.2.1馬爾可夫隨機(jī)場(chǎng)理論MRF是指具有馬爾可夫性的隨機(jī)場(chǎng),其主要包括馬爾可夫性和隨機(jī)場(chǎng)兩個(gè)部分[89,90]。其中,馬爾可夫性是指按照時(shí)間順序?qū)㈦S機(jī)變量序列排列開(kāi),第t+1時(shí)刻的分布特征僅與第t時(shí)刻隨機(jī)變量取值相關(guān),而與第t時(shí)刻之前的隨機(jī)變量取值無(wú)關(guān),如圖2.3所示。另外,隨機(jī)場(chǎng)包含位置和相空間兩個(gè)部分,是指依據(jù)某種分布從相空間中選取值賦給每個(gè)位置,其全體稱為隨機(jī)常其中,相空間內(nèi)包含的是屬性值。t1XtXt1Xt2Xt圖2.3馬爾可夫性Figure2.3Markovproperty構(gòu)建MRF需滿足正性條件和馬爾可夫鏈性條件,其中正性條件表示隨機(jī)場(chǎng)內(nèi)各隨機(jī)變量的概率分布為正值,馬爾可夫鏈性條件表示隨機(jī)場(chǎng)內(nèi)隨機(jī)變量的概率分布僅與其鄰域隨機(jī)變量有關(guān)。在FMM中,組份權(quán)重表示像素類(lèi)屬性的先驗(yàn)概率,各像素的組份權(quán)重集π={πi;i=1,2,...,n}滿足MRF的正性條件和馬爾可夫鏈性條件,因此可將其視為MRF。這兩個(gè)條件表示為,lilip,0(2.13)iiiippNC||ππππ(2.14)式中,C為像素的空間域,C-{i}表示兩個(gè)集合之間相減,πC-{i}表示不包括像素i在內(nèi)的空間域C上所有像素的組份權(quán)重,iiiiNππN|表示像素i鄰域位置像素的組份權(quán)重集合,i"為鄰域像素索引,Ni為鄰域像素索引(位置)集合。在式(2.13)中,組份權(quán)重的概率分布為正值,滿足MRF正性條件。在式(2.14)中,在給定像素i鄰域組份權(quán)重條件下像素i組份權(quán)重的概率分布等價(jià)于給定全局(不包括像素i自身)組份權(quán)重條件下像素i組份權(quán)重的概率分布。由于像素i與其周?chē)袼鼐哂邢嗤?lèi)屬性的可能性很大,尤其是當(dāng)它們位于同一目
遼寧工程技術(shù)大學(xué)博士學(xué)位論文33(2.73),其作為蒙特卡洛方法的一種特例形式。綜上,將求解函數(shù)的積分問(wèn)題轉(zhuǎn)化為求解變量的概率分布問(wèn)題,在已知概率分布的前提下,依據(jù)該概率分布采樣n個(gè)隨機(jī)變量x的樣本集,利用式(2.74)可求得對(duì)應(yīng)函數(shù)的積分。對(duì)于復(fù)雜的概率分布p(x),通常采用接受-拒絕采樣獲得該分布的樣本,其基本思想是依據(jù)一定的準(zhǔn)則接受或拒絕采樣已知的或可采樣的概率分布的某些樣本,以近似實(shí)現(xiàn)復(fù)雜概率分布采樣的目的,其具體實(shí)現(xiàn)過(guò)程如圖2.9。圖中虛線表示b倍已知概率分布p"(x),實(shí)線表示復(fù)雜的概率分布p(x),且在虛線之下。首先,隨機(jī)采樣得到樣本x0,然后從(0,bp"(x0))中均勻采樣得到u,若u位于灰色區(qū)域,則拒絕該采樣樣本,否則接受該樣本。重復(fù)該采樣過(guò)程直到獲得n個(gè)被接受的采樣樣本。x0bp"(x0)bp"(x)up(x)圖2.9接受-拒絕采樣原理Figure2.9Principleofaccept-rejectsample綜上,接受-拒絕采樣只能得到一維概率分布的采樣樣本,而對(duì)于二維或高維的概率分布,該采樣方法難以獲得其采樣樣本。為此,將馬爾可夫鏈引入蒙特卡洛方法以實(shí)現(xiàn)采樣復(fù)雜概率分布的樣本集。(2)馬爾可夫鏈的細(xì)致平穩(wěn)條件定義:令q(κ,ζ)為馬爾可夫鏈的狀態(tài)轉(zhuǎn)移核,π(·)為概率分布,對(duì)所有隨機(jī)變量κ和ζ滿足條件:qq,,(2.75)則稱概率分布π(·)為狀態(tài)轉(zhuǎn)移核q(κ,ζ)的細(xì)致平穩(wěn)分布。若已知細(xì)致平穩(wěn)分布對(duì)應(yīng)的馬爾可夫鏈轉(zhuǎn)移核,可利用該轉(zhuǎn)移核采樣得到復(fù)雜概率分布的樣本集。因此,需要構(gòu)建出使概率分布π(·)滿足細(xì)致平穩(wěn)分布的轉(zhuǎn)移核q(κ,ζ),而MCMC方法解決了構(gòu)建滿足平穩(wěn)條件的轉(zhuǎn)移核q(κ,ζ)的問(wèn)題。(3)MCMC采樣對(duì)于任意的馬爾可夫鏈轉(zhuǎn)移核q(κ,ζ),其不滿足細(xì)致平穩(wěn)條件,即,qq,,(2.76)為了使細(xì)致平穩(wěn)條件成立,引入接受率a(κ
本文編號(hào):3310331
【文章來(lái)源】:遼寧工程技術(shù)大學(xué)遼寧省
【文章頁(yè)數(shù)】:156 頁(yè)
【學(xué)位級(jí)別】:博士
【部分圖文】:
FMM組份的概率分布
基于層次化混合模型的高分辨率遙感影像分割方法20(a)GMM(b)SMM(c)GaMM圖2.2FMMs的概率分布Figure2.2ProbabilitydistributionsofFMMs2.2馬爾可夫隨機(jī)場(chǎng)2.2.1馬爾可夫隨機(jī)場(chǎng)理論MRF是指具有馬爾可夫性的隨機(jī)場(chǎng),其主要包括馬爾可夫性和隨機(jī)場(chǎng)兩個(gè)部分[89,90]。其中,馬爾可夫性是指按照時(shí)間順序?qū)㈦S機(jī)變量序列排列開(kāi),第t+1時(shí)刻的分布特征僅與第t時(shí)刻隨機(jī)變量取值相關(guān),而與第t時(shí)刻之前的隨機(jī)變量取值無(wú)關(guān),如圖2.3所示。另外,隨機(jī)場(chǎng)包含位置和相空間兩個(gè)部分,是指依據(jù)某種分布從相空間中選取值賦給每個(gè)位置,其全體稱為隨機(jī)常其中,相空間內(nèi)包含的是屬性值。t1XtXt1Xt2Xt圖2.3馬爾可夫性Figure2.3Markovproperty構(gòu)建MRF需滿足正性條件和馬爾可夫鏈性條件,其中正性條件表示隨機(jī)場(chǎng)內(nèi)各隨機(jī)變量的概率分布為正值,馬爾可夫鏈性條件表示隨機(jī)場(chǎng)內(nèi)隨機(jī)變量的概率分布僅與其鄰域隨機(jī)變量有關(guān)。在FMM中,組份權(quán)重表示像素類(lèi)屬性的先驗(yàn)概率,各像素的組份權(quán)重集π={πi;i=1,2,...,n}滿足MRF的正性條件和馬爾可夫鏈性條件,因此可將其視為MRF。這兩個(gè)條件表示為,lilip,0(2.13)iiiippNC||ππππ(2.14)式中,C為像素的空間域,C-{i}表示兩個(gè)集合之間相減,πC-{i}表示不包括像素i在內(nèi)的空間域C上所有像素的組份權(quán)重,iiiiNππN|表示像素i鄰域位置像素的組份權(quán)重集合,i"為鄰域像素索引,Ni為鄰域像素索引(位置)集合。在式(2.13)中,組份權(quán)重的概率分布為正值,滿足MRF正性條件。在式(2.14)中,在給定像素i鄰域組份權(quán)重條件下像素i組份權(quán)重的概率分布等價(jià)于給定全局(不包括像素i自身)組份權(quán)重條件下像素i組份權(quán)重的概率分布。由于像素i與其周?chē)袼鼐哂邢嗤?lèi)屬性的可能性很大,尤其是當(dāng)它們位于同一目
遼寧工程技術(shù)大學(xué)博士學(xué)位論文33(2.73),其作為蒙特卡洛方法的一種特例形式。綜上,將求解函數(shù)的積分問(wèn)題轉(zhuǎn)化為求解變量的概率分布問(wèn)題,在已知概率分布的前提下,依據(jù)該概率分布采樣n個(gè)隨機(jī)變量x的樣本集,利用式(2.74)可求得對(duì)應(yīng)函數(shù)的積分。對(duì)于復(fù)雜的概率分布p(x),通常采用接受-拒絕采樣獲得該分布的樣本,其基本思想是依據(jù)一定的準(zhǔn)則接受或拒絕采樣已知的或可采樣的概率分布的某些樣本,以近似實(shí)現(xiàn)復(fù)雜概率分布采樣的目的,其具體實(shí)現(xiàn)過(guò)程如圖2.9。圖中虛線表示b倍已知概率分布p"(x),實(shí)線表示復(fù)雜的概率分布p(x),且在虛線之下。首先,隨機(jī)采樣得到樣本x0,然后從(0,bp"(x0))中均勻采樣得到u,若u位于灰色區(qū)域,則拒絕該采樣樣本,否則接受該樣本。重復(fù)該采樣過(guò)程直到獲得n個(gè)被接受的采樣樣本。x0bp"(x0)bp"(x)up(x)圖2.9接受-拒絕采樣原理Figure2.9Principleofaccept-rejectsample綜上,接受-拒絕采樣只能得到一維概率分布的采樣樣本,而對(duì)于二維或高維的概率分布,該采樣方法難以獲得其采樣樣本。為此,將馬爾可夫鏈引入蒙特卡洛方法以實(shí)現(xiàn)采樣復(fù)雜概率分布的樣本集。(2)馬爾可夫鏈的細(xì)致平穩(wěn)條件定義:令q(κ,ζ)為馬爾可夫鏈的狀態(tài)轉(zhuǎn)移核,π(·)為概率分布,對(duì)所有隨機(jī)變量κ和ζ滿足條件:qq,,(2.75)則稱概率分布π(·)為狀態(tài)轉(zhuǎn)移核q(κ,ζ)的細(xì)致平穩(wěn)分布。若已知細(xì)致平穩(wěn)分布對(duì)應(yīng)的馬爾可夫鏈轉(zhuǎn)移核,可利用該轉(zhuǎn)移核采樣得到復(fù)雜概率分布的樣本集。因此,需要構(gòu)建出使概率分布π(·)滿足細(xì)致平穩(wěn)分布的轉(zhuǎn)移核q(κ,ζ),而MCMC方法解決了構(gòu)建滿足平穩(wěn)條件的轉(zhuǎn)移核q(κ,ζ)的問(wèn)題。(3)MCMC采樣對(duì)于任意的馬爾可夫鏈轉(zhuǎn)移核q(κ,ζ),其不滿足細(xì)致平穩(wěn)條件,即,qq,,(2.76)為了使細(xì)致平穩(wěn)條件成立,引入接受率a(κ
本文編號(hào):3310331
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/3310331.html
最近更新
教材專(zhuān)著