多層次系統(tǒng)代理模型的不確定性量化及序列采樣方法研究
[Abstract]:With the rapid development of modern industry, the design of complex systems usually involves many decision variables and factors. In the traditional "All-In-One (AIO)" method, all the design variables in the complex system are optimized at the same time, which leads to the complexity of the optimization design model and the low computational efficiency. In order to reduce the computational complexity in the process of complex system analysis and design, improve the computational efficiency, and realize the parallel analysis and design of complex system, Often, the complex system can be decomposed into several subsystems (also known as submodels) with hierarchical relationship with each other according to the functional logic and physical composition structure, and then each subsystem can be analyzed and designed independently. If the computer simulation technology is used directly for each subsystem (such as structural finite element simulation, material molecular dynamics simulation), the calculation amount will be very large. Therefore, agent model (Metamodel) is widely used to replace the real simulation model of subsystems in engineering. However, due to the limitation of the number of initial sampling points, there must be agent model uncertainty between the agent model and the real model (Metamodeling Uncertainty), and the uncertainty of the agent model has an important impact on the system analysis and design. In the past few decades, scholars have studied and proposed many proxy models and sequence sampling methods. However, up to now, the research on the uncertainty of agent model and improving the accuracy of agent model (Fidelity) in the design of multi-level complex systems is very limited. Around this problem, this paper studies the uncertainty quantification of multi-level system agent model and the sequence sampling method for multi-level system agent model. The specific research contents and main innovations are as follows: (1) in the multi-level complex system, the uncertainty of the agent model of each layer subsystem will be transferred from the bottom layer to the top level response of the system. In order to analyze the influence of the uncertainty of the agent model of each layer subsystem in the multi-level complex system on the top-level response of the system, a quantitative method of uncertainty of the multi-level system agent model is proposed in this paper. The analytical expression of the uncertainty of each subsystem agent model to the top level response uncertainty of the system is derived. (2) in order to reduce the computational complexity and improve the computational efficiency in the process of uncertainty quantification of the multi-level system agent model, In this paper, the idea of using numerical integration to calculate the uncertainty transfer problem of agency model is put forward, and several commonly used numerical integration methods are compared from two aspects of calculation efficiency and calculation accuracy. Finally, the Gao Si-Hermitian integral method is selected and applied to the calculation of uncertainty transfer of multi-level system agent model. (3) most of the existing sequence sampling methods only consider the uncertainty of single-layer agent model. And the strategy of improving accuracy. However, this method ignores the uncertainty transfer problem between the agent models of each layer subsystem in the multi-level system, and the selected sampling points often can not improve the accuracy of the multi-level system agent model to the greatest extent. Based on this situation, a new sequential sampling method for multi-level system agent model is proposed in this paper. This method takes into account the uncertainty of each agent model, selects the position which has the greatest influence on the uncertainty of the whole system to collect new sample points, and then updates the agent model of each layer of the system. Until the accuracy of the proxy model of the whole system meets the predetermined requirements. Compared with the conventional sampling scheme, it is found that the method proposed in this paper is more reasonable for the allocation of new sample points and can improve the accuracy of the system agent model to the greatest extent when the new sample points are limited.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TB472
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 裴進(jìn)明;陳曉輝;;多精度仿真方法及其在天線優(yōu)化設(shè)計(jì)中的應(yīng)用[J];電波科學(xué)學(xué)報(bào);2013年06期
2 陳曉輝;裴進(jìn)明;郭欣欣;齊松;;一種基于多維均勻采樣與Kriging模型的天線快速優(yōu)化方法[J];電子與信息學(xué)報(bào);2014年12期
3 武澤平;王東輝;楊希祥;江振宇;張為華;;應(yīng)用徑向基代理模型實(shí)現(xiàn)序列自適應(yīng)再采樣優(yōu)化策略[J];國防科技大學(xué)學(xué)報(bào);2014年06期
4 楊易;劉政;谷正氣;黃劍鋒;蔡圣康;;MIRA階梯背模型尾部非光滑表面優(yōu)化設(shè)計(jì)方法[J];重慶大學(xué)學(xué)報(bào);2015年04期
5 吳宗諭;羅文彩;陳小前;陳勇;;序貫徑向基模型在氣動熱分析中的應(yīng)用[J];工程熱物理學(xué)報(bào);2015年08期
6 鄧海強(qiáng);余雄慶;;亞聲速翼身融合無人機(jī)概念外形參數(shù)優(yōu)化[J];航空學(xué)報(bào);2014年05期
7 曹學(xué)群;羅娜;葉貞成;;基于Kriging代理模型的苯乙烯流程優(yōu)化[J];華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
8 趙留平;詹大為;程遠(yuǎn)勝;劉均;;船舶結(jié)構(gòu)優(yōu)化設(shè)計(jì)技術(shù)研究進(jìn)展[J];中國艦船研究;2014年04期
9 HU ChangLi;WANG GuoYu;CHEN GuangHao;HUANG Biao;;A modified PANS model for computations of unsteady turbulence cavitating flows[J];Science China(Physics,Mechanics & Astronomy);2014年10期
10 徐含樂;祝小平;周洲;任武;;基于左手材料的翼面隱身結(jié)構(gòu)設(shè)計(jì)及優(yōu)化[J];航空學(xué)報(bào);2014年12期
相關(guān)會議論文 前1條
1 徐娟;李兆龍;陳如山;;超寬帶微帶天線優(yōu)化的空間映射算法研究[A];2015年全國微波毫米波會議論文集[C];2015年
相關(guān)博士學(xué)位論文 前10條
1 俞國華;水平軸風(fēng)力機(jī)葉片失速問題研究[D];上海交通大學(xué);2013年
2 王博;基于CFD方法的先進(jìn)旋翼氣動特性數(shù)值模擬及優(yōu)化研究[D];南京航空航天大學(xué);2012年
3 黃雪飛;Mg-Sn-Mn及Mg-Cu-Mn合金的性能優(yōu)化和顯微結(jié)構(gòu)[D];清華大學(xué);2013年
4 宋昕;汽車氣動升力及其對直線行駛能力影響的研究[D];湖南大學(xué);2012年
5 甘衍軍;復(fù)雜地球物理過程模型的敏感性分析方法與應(yīng)用研究[D];北京師范大學(xué);2014年
6 MARY OPOKUA ANSONG;基于復(fù)雜系統(tǒng)模型的地下采礦無線傳感器網(wǎng)絡(luò)中的優(yōu)化混合神經(jīng)網(wǎng)絡(luò)[D];江蘇大學(xué);2014年
7 鄭君;基于變可信度近似的設(shè)計(jì)優(yōu)化關(guān)鍵技術(shù)研究[D];華中科技大學(xué);2014年
8 彭磊;桁架式靜止軌道衛(wèi)星平臺多學(xué)科多任務(wù)設(shè)計(jì)優(yōu)化[D];北京理工大學(xué);2015年
9 胡常莉;繞回轉(zhuǎn)體空化流動特性與機(jī)理研究[D];北京理工大學(xué);2015年
10 趙軻;基于CFD的復(fù)雜氣動優(yōu)化與穩(wěn)健設(shè)計(jì)方法研究[D];西北工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 于海濱;陶瓷刀具材料三維微觀裂紋擴(kuò)展行為模擬研究[D];山東大學(xué);2013年
2 張茶花;風(fēng)力機(jī)葉片氣動性能分析及優(yōu)化設(shè)計(jì)[D];華北電力大學(xué);2013年
3 李鵬飛;隨機(jī)性優(yōu)化算法性能定量對比評價(jià)方法與應(yīng)用[D];中國工程物理研究院;2013年
4 劉云剛;基于剛度和耐撞性的車門結(jié)構(gòu)輕量化設(shè)計(jì)研究[D];華南理工大學(xué);2013年
5 文藝;基于響應(yīng)面法的拉延工藝參數(shù)優(yōu)化設(shè)計(jì)[D];華中科技大學(xué);2013年
6 胡彭俊;HD-2汽車模型風(fēng)洞試驗(yàn)數(shù)據(jù)影響因素分析及其優(yōu)化[D];湖南大學(xué);2013年
7 劉鵬輝;基于徑向基函數(shù)的地鐵車輛動力學(xué)計(jì)算仿真[D];北京交通大學(xué);2014年
8 聶云;車尾造型對凹坑型非光滑車身氣動減阻的影響與優(yōu)化[D];湖南大學(xué);2014年
9 李哲;基于代理模型法和差分進(jìn)化算法的天線優(yōu)化設(shè)計(jì)[D];西安電子科技大學(xué);2014年
10 李光昱;基于多項(xiàng)式插值代理模型的飛行器MDO技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2012年
,本文編號:2480408
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/2480408.html