同類平行機(jī)批調(diào)度問(wèn)題研究
[Abstract]:Production scheduling problem is a kind of combinatorial optimization problem with important research value. It widely exists in various industries of modern production. The batch scheduling problem, which is extended from the classical scheduling problem, has become one of the hot issues in the field of production scheduling because of its extensive practical value and better theoretical support. With the rise of new production mode and its wide application in enterprises, the production environment of enterprises is extended from traditional single-machine production environment to complex multi-machine production environment. With the rapid development of information technology, the Internet of things (IoT) technology has been widely used in the manufacturing process of enterprises, which brings both opportunities and challenges to the production scheduling of enterprises. As an important part of the new generation of information technology, the application of Internet of things technology in the field of production scheduling can realize the identification of production scheduling objects and obtain the state information and location information of production scheduling objects and machines. Whether the decision-makers can make full use of this information in the fierce market competition to make efficient and reliable scheduling strategy and realize the intelligent optimal scheduling process will become the key to the enterprises to be invincible in the fierce competition market. Based on the information provided by the Internet of things (IoT), the batch scheduling problem of two special cases in which the processing equipment is in the same parallel machine environment is studied systematically in this paper around the process of parallel batch machining in semiconductor manufacturing. In order to minimize the manufacturing span, the conditions of different transportation time and different capacity of processing equipment are considered respectively. The main work of the thesis is as follows: (1) the mathematical model of the same parallel machine batch scheduling problem considering the transportation time is established with the goal of minimizing the manufacturing span. Based on the analysis of the properties of the problem, a heuristic algorithm and a local search strategy are proposed. Combined with the advantages of discrete particle swarm optimization and genetic algorithm, a hybrid DPSO-GA algorithm is proposed to solve the problem. The proposed hybrid DPSO-GA algorithm is compared with the related algorithms through simulation experiments to verify the effectiveness of the proposed algorithm. The results show that the proposed hybrid DPSO-GA algorithm can efficiently solve the problem in a reasonable time. (2) the batch scheduling problem in the same parallel machining environment with different capacity is studied. The mathematical model of the batch scheduling problem is established by minimizing the manufacturing span, and a heuristic algorithm is proposed to generate the initial solution of the genetic algorithm. Then an improved genetic algorithm with local search strategy is designed to solve the scheduling problem. Experimental results show that the improved genetic algorithm proposed in this paper can effectively solve the similar parallel machine batch scheduling problem with different capacity.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB497
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張智聰;鄭力;翁小華;;優(yōu)化加權(quán)平均流程時(shí)間的平行機(jī)調(diào)度[J];現(xiàn)代制造工程;2007年09期
2 張智聰;鄭力;翁小華;;基于增強(qiáng)學(xué)習(xí)的平行機(jī)調(diào)度研究[J];計(jì)算機(jī)集成制造系統(tǒng);2007年01期
3 王成堯,汪定偉;有模機(jī)配合約束的平行機(jī)臺(tái)調(diào)度方法[J];東北大學(xué)學(xué)報(bào);1999年04期
4 蔣大奎;李波;;基于禁忌搜索的平行機(jī)多工廠供應(yīng)鏈調(diào)度[J];中國(guó)機(jī)械工程;2012年06期
5 肖晶;張燦榮;鄭力;;基于數(shù)學(xué)規(guī)劃的平行機(jī)批量調(diào)度固定優(yōu)化算法[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
6 溫燕;連續(xù)滾動(dòng)生產(chǎn)作業(yè)安排中初始狀態(tài)非平凡的P//C_(max)問(wèn)題[J];煙臺(tái)大學(xué)學(xué)報(bào)(自然科學(xué)與工程版);1998年03期
7 王天坤;;平行機(jī)調(diào)度問(wèn)題的列生成方法研究[J];裝備制造技術(shù);2014年05期
8 馮琪;財(cái)玉華;;具有維修時(shí)間的兩臺(tái)平行機(jī)在線排序[J];河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
9 趙洪鑾;韓國(guó)勇;;交貨期窗口待定情況下的平行機(jī)排序問(wèn)題[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2006年05期
10 霍錄景;米洪海;;具有模糊交貨期的平行機(jī)排序問(wèn)題[J];科學(xué)技術(shù)與工程;2012年12期
相關(guān)會(huì)議論文 前1條
1 聞?wù)裥l(wèi);;一類平行機(jī)上的任務(wù)指派問(wèn)題及其動(dòng)態(tài)規(guī)劃算法[A];中國(guó)運(yùn)籌學(xué)會(huì)第九屆學(xué)術(shù)交流會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前7條
1 劉珊珊;一些單機(jī)和平行機(jī)排序情形的研究[D];華東理工大學(xué);2015年
2 陳友軍;有運(yùn)送協(xié)調(diào)性的最小化最大運(yùn)送完成時(shí)間平行機(jī)排序[D];鄭州大學(xué);2016年
3 何杰;預(yù)防性維護(hù)下的混合型平行機(jī)調(diào)度問(wèn)題研究[D];湖南大學(xué);2016年
4 李松松;現(xiàn)代排序理論中的三類重要問(wèn)題:博弈排序,分批可拒絕排序和在線排序[D];曲阜師范大學(xué);2016年
5 程貞敏;平行機(jī)調(diào)度問(wèn)題研究的若干結(jié)果[D];北京師范大學(xué);2008年
6 蔡圣義;同類平行機(jī)在線半在線排序參數(shù)界的若干研究[D];浙江大學(xué);2010年
7 何龍敏;一類平行機(jī)和批處理機(jī)組成的二階段柔性流水作業(yè)問(wèn)題[D];上海大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 郭平寧;工件帶權(quán)重的平行機(jī)博弈排序問(wèn)題[D];曲阜師范大學(xué);2015年
2 李大偉;考慮延誤的平行機(jī)可拒絕排序[D];曲阜師范大學(xué);2015年
3 趙云;帶等級(jí)平行機(jī)調(diào)度和MapReduce調(diào)度問(wèn)題的算法研究[D];浙江理工大學(xué);2016年
4 張家寶;考慮維護(hù)和可中斷工件的混合型平行機(jī)調(diào)度問(wèn)題研究[D];東華理工大學(xué);2016年
5 蔣露;同類平行機(jī)批調(diào)度問(wèn)題研究[D];合肥工業(yè)大學(xué);2017年
6 洪文益;與平行機(jī)排序相關(guān)的幾個(gè)組合問(wèn)題研究[D];清華大學(xué);2013年
7 李松松;在平行機(jī)博弈排序中的近似強(qiáng)納什均衡問(wèn)題[D];曲阜師范大學(xué);2013年
8 王君麗;有加工權(quán)限平行機(jī)在線問(wèn)題研究[D];浙江大學(xué);2012年
9 財(cái)玉華;具有非交叉維修時(shí)間的平行機(jī)在線排序[D];鄭州大學(xué);2007年
10 莫禎貞;改進(jìn)粒子群算法在模糊環(huán)境下平行機(jī)批調(diào)度問(wèn)題中的應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
,本文編號(hào):2405464
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/2405464.html