三軸向振動試驗(yàn)系統(tǒng)及其關(guān)鍵技術(shù)研究
發(fā)布時(shí)間:2018-12-09 08:50
【摘要】:振動環(huán)境試驗(yàn)通過復(fù)現(xiàn)待試件在實(shí)際工況下所遭受的振動環(huán)境,以考核試件的振動力學(xué)性能和可靠性。相比于傳統(tǒng)的單軸向振動試驗(yàn)系統(tǒng)而言,三軸向振動試驗(yàn)系統(tǒng)提供的模擬振動環(huán)境更加接近真實(shí)振動環(huán)境,且不易產(chǎn)生過實(shí)驗(yàn)或欠試驗(yàn)。本論文針對三軸向振動試驗(yàn)系統(tǒng)及其關(guān)鍵技術(shù),對試驗(yàn)系統(tǒng)的設(shè)計(jì)、關(guān)鍵技術(shù)分析、相關(guān)控制策略的分析主要做了如下工作:(1)三軸向振動試驗(yàn)系統(tǒng)及關(guān)鍵技術(shù)分析。分析研究三軸向振動試驗(yàn)系統(tǒng)及其關(guān)鍵技術(shù)的發(fā)展,重點(diǎn)研究關(guān)鍵技術(shù)中的解耦補(bǔ)償、系統(tǒng)辨識與系統(tǒng)設(shè)計(jì)等;(2)三軸向振動試驗(yàn)解耦補(bǔ)償與系統(tǒng)辨識。試驗(yàn)系統(tǒng)的機(jī)械解耦選用雙維一體式球保持型LM滾動導(dǎo)軌滑塊配合正交分布的LM滾動導(dǎo)軌來實(shí)現(xiàn);針對系統(tǒng)頻響矩陣奇異的情況,使用廣義逆代替頻響矩陣的逆,使用奇異值截?cái)喾▉韺?shí)現(xiàn)控制解耦補(bǔ)償;系統(tǒng)辨識分析結(jié)果表明傳統(tǒng)的H_1、H_2、H_3和H_4辨識方法都是對系統(tǒng)的有偏估計(jì),辨識精度不高,Hv估計(jì)法可以有效抑制系統(tǒng)辨識過程中干擾嗓聲的影響從而提高系統(tǒng)辨識精度,獲得高精度的系統(tǒng)阻抗矩陣;(3)三軸向正弦振動與隨機(jī)振動控制策略的分析。在單軸正弦振動與隨機(jī)振動控制策略的基礎(chǔ)上,對三軸向振動試驗(yàn)系統(tǒng)的正弦掃頻與隨機(jī)信號功率譜復(fù)現(xiàn)過程進(jìn)行研究,重點(diǎn)研究功率譜復(fù)現(xiàn)迭代修正閉環(huán)控制策略;(4)系統(tǒng)設(shè)計(jì)。根據(jù)三軸向振動試驗(yàn)系統(tǒng)試驗(yàn)要求,選擇合適的三軸向電動振動臺、振動控制器與功率放大器等,設(shè)計(jì)振動控制系統(tǒng)的硬件框架與軟件結(jié)構(gòu),構(gòu)建三軸向振動試驗(yàn)系統(tǒng)的實(shí)時(shí)控制框架,保證了系統(tǒng)的多通道數(shù)據(jù)實(shí)時(shí)傳輸、信號同步與實(shí)時(shí)處理。三軸向振動試驗(yàn)控制系統(tǒng)自閉環(huán)試驗(yàn)與現(xiàn)場試驗(yàn)結(jié)果表明:三軸向振動試驗(yàn)控制系統(tǒng)正弦掃頻現(xiàn)場試驗(yàn)結(jié)果可以控制在±1.5dB容差帶內(nèi);隨機(jī)信號功率譜復(fù)現(xiàn)迭代修正閉環(huán)控制策略的自閉環(huán)試驗(yàn)與現(xiàn)場試驗(yàn)結(jié)果均在±3dB容差帶內(nèi),表明實(shí)時(shí)控制系統(tǒng)與控制策略具有工程有效性。
[Abstract]:In order to test the vibration mechanical properties and reliability of the specimen, the vibration environment of the specimen was reappeared in the vibration environment test under the actual working conditions. Compared with the traditional uniaxial vibration test system, the simulated vibration environment provided by the triaxial vibration test system is closer to the real vibration environment, and it is not easy to produce experimental or under-test. Aiming at the triaxial vibration test system and its key technology, the design of the test system, the analysis of the key technology, and the analysis of the related control strategy have been done as follows: (1) the triaxial vibration test system and the key technology analysis. The development of triaxial vibration test system and its key technologies are analyzed and studied, with emphasis on decoupling compensation, system identification and system design. (2) decoupling compensation and system identification in triaxial vibration test. The mechanical decoupling of the test system is realized by using two-dimensional ball holding LM rolling guide slider and orthogonal distribution LM rolling guide. For the singular frequency response matrix of the system, the generalized inverse is used instead of the inverse of the frequency response matrix, and the singular value truncation method is used to realize the decoupling compensation. The results of the system identification analysis show that the traditional identification methods of Hstack 1 / H _ 2H _ S _ 3 and H _ s _ 4 are biased estimates of the system, and the identification accuracy is not high. The Hv estimation method can effectively suppress the interference noise in the identification process and improve the system identification accuracy and obtain the system impedance matrix with high accuracy. (3) Analysis of the control strategy of triaxial sinusoidal vibration and random vibration. Based on the control strategy of uniaxial sinusoidal vibration and random vibration, this paper studies the process of sinusoidal sweep frequency and power spectrum reproduction of random signal in triaxial vibration test system, and focuses on the iterative correction closed-loop control strategy of power spectrum reproduction. (4) system design. According to the test requirements of the triaxial vibration test system, the hardware frame and software structure of the vibration control system are designed by selecting suitable triaxial electric vibration table, vibration controller and power amplifier, etc. The real-time control framework of triaxial vibration test system is constructed, which ensures the real-time transmission of multi-channel data, signal synchronization and real-time processing. Self-closed loop test and field test results of triaxial vibration test control system show that the results of sinusoidal sweep frequency field test of triaxial vibration test control system can be controlled in 鹵1.5dB tolerance zone. The results of self-closed loop test and field test of iterative modified closed-loop control strategy for random signal power spectrum are in 鹵3dB tolerance band, which shows that the real-time control system and control strategy are effective in engineering.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB534.3
[Abstract]:In order to test the vibration mechanical properties and reliability of the specimen, the vibration environment of the specimen was reappeared in the vibration environment test under the actual working conditions. Compared with the traditional uniaxial vibration test system, the simulated vibration environment provided by the triaxial vibration test system is closer to the real vibration environment, and it is not easy to produce experimental or under-test. Aiming at the triaxial vibration test system and its key technology, the design of the test system, the analysis of the key technology, and the analysis of the related control strategy have been done as follows: (1) the triaxial vibration test system and the key technology analysis. The development of triaxial vibration test system and its key technologies are analyzed and studied, with emphasis on decoupling compensation, system identification and system design. (2) decoupling compensation and system identification in triaxial vibration test. The mechanical decoupling of the test system is realized by using two-dimensional ball holding LM rolling guide slider and orthogonal distribution LM rolling guide. For the singular frequency response matrix of the system, the generalized inverse is used instead of the inverse of the frequency response matrix, and the singular value truncation method is used to realize the decoupling compensation. The results of the system identification analysis show that the traditional identification methods of Hstack 1 / H _ 2H _ S _ 3 and H _ s _ 4 are biased estimates of the system, and the identification accuracy is not high. The Hv estimation method can effectively suppress the interference noise in the identification process and improve the system identification accuracy and obtain the system impedance matrix with high accuracy. (3) Analysis of the control strategy of triaxial sinusoidal vibration and random vibration. Based on the control strategy of uniaxial sinusoidal vibration and random vibration, this paper studies the process of sinusoidal sweep frequency and power spectrum reproduction of random signal in triaxial vibration test system, and focuses on the iterative correction closed-loop control strategy of power spectrum reproduction. (4) system design. According to the test requirements of the triaxial vibration test system, the hardware frame and software structure of the vibration control system are designed by selecting suitable triaxial electric vibration table, vibration controller and power amplifier, etc. The real-time control framework of triaxial vibration test system is constructed, which ensures the real-time transmission of multi-channel data, signal synchronization and real-time processing. Self-closed loop test and field test results of triaxial vibration test control system show that the results of sinusoidal sweep frequency field test of triaxial vibration test control system can be controlled in 鹵1.5dB tolerance zone. The results of self-closed loop test and field test of iterative modified closed-loop control strategy for random signal power spectrum are in 鹵3dB tolerance band, which shows that the real-time control system and control strategy are effective in engineering.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB534.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許運(yùn)秀;船舶軸系軸向振動問題[J];噪聲與振動控制;1982年03期
2 許運(yùn)秀,何軒軒,鐘學(xué)添;船舶軸系的軸向振動及頻率計(jì)算[J];噪聲與振動控制;1982年05期
3 商大中;變速旋轉(zhuǎn)梁的軸向振動及其穩(wěn)定性[J];汽輪機(jī)技術(shù);1988年04期
4 Д·А·阿爾卡杰也夫;Е·Б·卡爾賓;丁悚;;節(jié)點(diǎn)衛(wèi)帶葉片組軸向振動頻率計(jì)算[J];國外艦船技術(shù)(特輔機(jī)電設(shè)備類);1979年02期
5 林,
本文編號:2369114
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/2369114.html
最近更新
教材專著