天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 管理論文 > 工程管理論文 >

基于遺傳算法和MRF的亞像元定位方法研究

發(fā)布時間:2018-09-13 16:58
【摘要】:高光譜遙感是一種多維信息獲取技術(shù),它不僅可以獲得描述地物分布的二維空間信息,而且可以獲得對應(yīng)地物的一維光譜信息。高光譜遙感圖像的光譜分辨率很高,隨著光譜分辨率的提高,其對地物的認知能力也不斷的提升,但是高光譜遙感圖像的空間分辨率仍然很低,混合像素普遍的存在于高光譜遙感圖像中。針對混合像素的處理,硬分類方法會導(dǎo)致地物信息的大量丟失,正因為如此,提出軟分類方法,具體來說包括端元提取,豐度反演和亞像元定位三個部分,端元提取算法提取高光譜圖像中所含有的端元,豐度反演是計算各端元在混合像素中所含有的豐度,亞像元定位技術(shù)預(yù)測各端元在混合像素中的分布。本文針對高光譜遙感圖像亞像元定位方法中一些關(guān)鍵問題進行了研究。具體工作如下:首先,對亞像素和像素之間的吸引力模型(SPSAM),像元交換算法(PSA)等基礎(chǔ)的亞像元定位算法進行了研究。SPSAM直接對亞像素進行賦值,而且吸引力值計算方法極為粗糙,使其亞像元定位結(jié)果中出現(xiàn)很多獨立的像素。PSA具有高效的迭代速度,但是其缺點是對噪聲和亞像元的初始分布非常敏感。其次,對遺傳算法在亞像元定位中的應(yīng)用進行了分析,由于遺傳算法中交叉算子選擇所交換基因的隨機性,使得其迭代效率很低,最終的亞像元定位結(jié)果精度也不高。本文提出了一種基于改進的遺傳算法(MGA)的亞像元定位算法,該算法既結(jié)合了遺傳算法(GA)中種群思想的優(yōu)點,又結(jié)合了像元交換算法(PSA)中高效的迭代速率的優(yōu)點,使其迭代效率進一步增強。最后,上述亞像元定位算法是以光譜解混所得的豐度圖像作為輸入,由于現(xiàn)有的光譜解混算法很難達到其精度要求,使得最終亞像元定位結(jié)果存在誤差的疊加,精度無法進一步提高。針對這些算法,本文首先描述了馬爾科夫隨機場(MRF)在亞像元定位中的應(yīng)用,由于MRF可以結(jié)合空間和光譜信息,進一步描述了基于多光譜約束MRF的亞像元定位算法,雖然基于多光譜約束的MRF亞像元定位算法可以進一步提高SPM精度,但是由于其沒有考慮亞像素平移圖像(SSRSI)的空間信息,使得其精度有限,針對此缺點,本文提出了基于多空間約束和多光譜約束的MRF亞像元定位算法,進一步提高了亞像元定位的精度。
[Abstract]:Hyperspectral remote sensing is a multidimensional information acquisition technique, which can not only obtain two-dimensional spatial information to describe the distribution of ground objects, but also obtain one-dimensional spectral information of corresponding objects. The spectral resolution of hyperspectral remote sensing image is very high. With the improvement of spectral resolution, the cognitive ability of hyperspectral remote sensing image is improved, but the spatial resolution of hyperspectral remote sensing image is still very low. Mixed pixels are common in hyperspectral remote sensing images. For the processing of mixed pixels, the hard classification method will lead to a lot of loss of ground object information. Because of this, a soft classification method is proposed, which includes End-element extraction, abundance inversion and sub-pixel location. End-element extraction algorithm extracts endelements from hyperspectral images. Abundance inversion is used to calculate the abundance of each endelement in the mixed pixel, and sub-pixel localization technique is used to predict the distribution of each endelement in the mixed pixel. In this paper, some key problems in sub-pixel localization of hyperspectral remote sensing images are studied. The main work is as follows: firstly, the subpixel location algorithm based on the attraction model between sub-pixel and pixel, such as (SPSAM), pixel exchange algorithm (PSA), is studied. SPSAM directly assign sub-pixel value, and the calculation method of attraction value is very rough. Many independent pixels. PSA in the sub-pixel localization results have high iterative speed, but their disadvantages are that they are very sensitive to the initial distribution of noise and sub-pixel. Secondly, the application of genetic algorithm in sub-pixel location is analyzed. Because of the randomness of crossover operator selection, the iterative efficiency of genetic algorithm is very low, and the precision of final sub-pixel localization is not high. In this paper, a sub-pixel localization algorithm based on improved genetic algorithm (MGA) is proposed. This algorithm combines the advantages of population idea in genetic algorithm (GA) and the efficient iterative rate in pixel exchange algorithm (PSA). The iteration efficiency is further enhanced. Finally, the above sub-pixel localization algorithm is based on the abundance image obtained by spectral unmixing. Because the existing spectral de-mixing algorithms are difficult to achieve its precision requirements, the final sub-pixel localization results have a superposition of errors. The precision cannot be further improved. In view of these algorithms, this paper first describes the application of Markov random field (MRF) in sub-pixel localization. Because MRF can combine spatial and spectral information, the sub-pixel localization algorithm based on multi-spectral constraint MRF is further described. Although the MRF sub-pixel localization algorithm based on multi-spectral constraints can further improve the accuracy of SPM, but because it does not consider the spatial information of subpixel translation image (SSRSI), its accuracy is limited. In this paper, a MRF sub-pixel localization algorithm based on multi-spatial constraints and multi-spectral constraints is proposed, which further improves the accuracy of sub-pixel localization.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP751

【參考文獻】

相關(guān)期刊論文 前6條

1 ;Integration of spatial attractions between and within pixels for sub-pixel mapping[J];Journal of Systems Engineering and Electronics;2012年02期

2 滕安國;高峰;夏新成;李春保;周光宏;;高光譜技術(shù)在農(nóng)業(yè)中的應(yīng)用研究進展[J];江蘇農(nóng)業(yè)科學(xué);2009年03期

3 周磊;辛曉平;李剛;楊桂霞;張宏斌;;高光譜遙感在草原監(jiān)測中的應(yīng)用[J];草業(yè)科學(xué);2009年04期

4 婁全勝;陳蕾;王平;張晨;謝健;;高光譜遙感技術(shù)在海洋研究的應(yīng)用及展望[J];海洋湖沼通報;2008年03期

5 譚炳香;李增元;陳爾學(xué);龐勇;武紅敢;;高光譜遙感森林信息提取研究進展[J];林業(yè)科學(xué)研究;2008年S1期

6 張朝陽;程海峰;陳朝輝;鄭文偉;;高光譜遙感的發(fā)展及其對軍事裝備的威脅[J];光電技術(shù)應(yīng)用;2008年01期

相關(guān)碩士學(xué)位論文 前2條

1 王群明;遙感圖像亞像元定位及相關(guān)技術(shù)研究[D];哈爾濱工程大學(xué);2012年

2 朱鳳陽;高光譜圖像的異常目標檢測及亞像元定位研究[D];哈爾濱工業(yè)大學(xué);2009年

,

本文編號:2241787

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/2241787.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶49227***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com