基于高分辨率遙感圖像的車輛分類識別研究
[Abstract]:With the development of remote sensing technology and the improvement of satellite spatial resolution, the research of vehicle recognition based on high-resolution remote sensing image has made some achievements, and a relatively complete vehicle recognition process has been established. Based on the vehicle recognition process of high resolution remote sensing image, the method used in vehicle recognition is improved in order to obtain higher vehicle recognition accuracy. The main contents of this paper are as follows: (1) in the aspect of image preprocessing, sobel edge filtering method is used to process images. Compared with other image processing methods, such as linear transformation, which have been used in vehicle recognition research, Sobel edge filtering can better highlight vehicle edge features. It is beneficial to the subsequent vehicle recognition. (2) the optimal scale of vehicle segmentation in high-resolution remote sensing images is studied. By analyzing the characteristics of vehicles at different segmentation scales, this paper puts forward the method of determining the optimal scale based on vehicle area, which is based on the area of vehicle as the basis for determining the optimal scale of vehicle segmentation. When the total area of vehicle reaches the maximum value, the corresponding segmentation scale is the optimal scale of vehicle segmentation. This method is more suitable than the RMAS method based on spectral heterogeneity. (3) the characteristics of vehicles in high-resolution remote sensing images are analyzed in detail and the corresponding description of feature classes is established. In this paper, two classification methods, threshold classification and fuzzy rule, are introduced briefly. Combined with the characteristics of the two classification methods, a multi-feature threshold-fuzzy rule double classifier method is constructed. It is used to improve the recognition accuracy of vehicles with different luminance. (4) the vehicle recognition results are evaluated and analyzed by using various kinds of high-resolution remote sensing images and the corresponding evaluation factors. The results were 96% accuracy, 89% integrity and 86% overall quality. Compared with the recognition results of brightly colored vehicles at the same resolution, the recognition method in this paper has higher recognition accuracy than the previous research, and there are few errors and omissions. The results show that the method and classification method of optimal vehicle segmentation scale proposed in this paper have good universality and feasibility.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP751
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 谷正氣;李健;張勇;夏威;羅倫;;一種高分辨率可見光遙感影像中車輛目標(biāo)檢測方法[J];測繪通報;2015年01期
2 胡文亮;趙萍;董張玉;;一種改進(jìn)的遙感影像面向?qū)ο笞顑?yōu)分割尺度計算模型[J];地理與地理信息科學(xué);2010年06期
3 豐偉;吳煥榮;王巖;趙峰;;基于航空影像的樹冠提取方法研究[J];山東林業(yè)科技;2010年04期
4 吳亮;胡云安;;遙感圖像自動道路提取方法綜述[J];自動化學(xué)報;2010年07期
5 鄭宏;胡學(xué)敏;;高分辨率衛(wèi)星影像車輛檢測的抗體網(wǎng)絡(luò)[J];遙感學(xué)報;2009年05期
6 謝勤嵐;;圖像降噪的自適應(yīng)高斯平滑濾波器[J];計算機(jī)工程與應(yīng)用;2009年16期
7 李禹;計科峰;吳永輝;粟毅;;高分辨率SAR圖像車輛目標(biāo)幾何特征提取方法[J];系統(tǒng)工程與電子技術(shù);2009年01期
8 曾建航;魏萌;王靳輝;尚怡君;;基于知識的遙感影像模糊分類方法[J];測繪科學(xué)技術(shù)學(xué)報;2008年03期
9 唐偉;趙書河;王培法;;面向?qū)ο蟮母呖臻g分辨率遙感影像道路信息的提取[J];地球信息科學(xué);2008年02期
10 曾嘉亮;;基于邊緣檢測的圖像銳化算法[J];現(xiàn)代電子技術(shù);2006年12期
相關(guān)博士學(xué)位論文 前3條
1 陽樹洪;灰度圖像閾值分割的自適應(yīng)和快速算法研究[D];重慶大學(xué);2014年
2 李艷梅;圖像增強(qiáng)的相關(guān)技術(shù)及應(yīng)用研究[D];電子科技大學(xué);2013年
3 黃慧萍;面向?qū)ο笥跋穹治鲋械某叨葐栴}研究[D];中國科學(xué)院研究生院(遙感應(yīng)用研究所);2003年
相關(guān)碩士學(xué)位論文 前10條
1 劉超超;基于光學(xué)衛(wèi)星影像的車輛識別和速度估算研究[D];北京交通大學(xué);2015年
2 張曉利;衛(wèi)星影像中城市道路區(qū)域車輛目標(biāo)提取方法研究[D];北京交通大學(xué);2015年
3 謝小杰;基于資源三號影像的植被信息提取方法及應(yīng)用[D];南京林業(yè)大學(xué);2014年
4 王昌滿;面向?qū)ο蟮倪b感影像旱季水田利用信息提取[D];昆明理工大學(xué);2014年
5 郭甜甜;衛(wèi)星圖像中提取車輛目標(biāo)的尺度問題研究[D];北京交通大學(xué);2013年
6 李龍飛;衛(wèi)星圖像中車輛目標(biāo)提取方法優(yōu)化與精度評價[D];北京交通大學(xué);2012年
7 孟育紅;基于對象影像分析技術(shù)提取日光溫室遙感信息方法研究[D];蘭州大學(xué);2012年
8 郭杜杜;基于高分辨率衛(wèi)星影像的城市道路陰影區(qū)域車輛信息提取研究[D];北京交通大學(xué);2011年
9 孫奇飛;人臉疲勞狀態(tài)的識別與研究[D];廣東工業(yè)大學(xué);2011年
10 索明亮;衛(wèi)星圖像中運(yùn)動車輛探測和速度提取研究[D];北京交通大學(xué);2011年
,本文編號:2188635
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/2188635.html