生物組織協(xié)同減振機(jī)理及仿生減振裝置設(shè)計方法研究
本文選題:仿生減振 + 生物原型。 參考:《山東大學(xué)》2014年博士論文
【摘要】:機(jī)械裝備中大量使用的質(zhì)量-彈簧-阻尼減振裝置,當(dāng)承受多種復(fù)雜激勵(如各種工況下工作載荷、不同環(huán)境激勵、基礎(chǔ)干擾等)耦合作用或激振頻率發(fā)生偏移時,減振效果明顯劣化。本文基于自然界生物機(jī)體可適應(yīng)外部載荷的強(qiáng)度、頻率的變化調(diào)整自身結(jié)構(gòu)實現(xiàn)高效減振的事實,以啄木鳥頭和馬腿為仿生原型,對其生物組織的非線性特性、減振機(jī)理以及仿生減振裝置設(shè)計、優(yōu)化方法進(jìn)行系統(tǒng)研究,為工程實際中進(jìn)行減振裝置的仿生設(shè)計與應(yīng)用提供理論和技術(shù)支持。 利用非線性動力學(xué)和生物力學(xué)理論,闡明了啄木鳥頭部組織、馬腿部組織各自的協(xié)同減振作用機(jī)理。啄木鳥頭部組織的協(xié)同減振作用體現(xiàn)在:在啄擊力作用下,頭部喙的非線性彈性力、肌肉軟組織的非線性彈性力和阻尼力、腦脊液的流體阻力能夠有機(jī)協(xié)作,協(xié)同一致共同實現(xiàn)保護(hù)大腦避免沖擊損傷這一自標(biāo);馬腿部組織的協(xié)同減振作用體現(xiàn)在:在復(fù)雜路況機(jī)理作用下,腿部骨骼的彈性力、肌肉的非線性肌肉力、足底“肉墊”的阻尼力能夠協(xié)同一致共同避免機(jī)體在路況帶來的拉伸、壓縮、彎曲、剪切等變形過程中受到損傷?紤]啄木鳥頭部喙的剛度非線性、肌肉軟組織的剛度和阻尼非線性、腦脊液流體阻力以及馬腿部非線性肌肉力等因素的影響,分別建立了啄木鳥頭、馬腿協(xié)同減振系統(tǒng)非線性動力學(xué)模型,探討了啄木鳥頭部喙、肌肉軟組織、腦脊液和馬腿部骨骼、肌肉、足底“肉墊”的剛度和阻尼變化規(guī)律。根據(jù)增量諧波平衡理論,對啄木鳥頭部減振系統(tǒng)動力學(xué)模型進(jìn)行了基諧波附近振動的近似解析,計算獲得了啄木鳥大腦的頻響特性。 建立了變剛度變阻尼減振系統(tǒng)實驗臺。完成了實驗臺本體、質(zhì)量元件、非線性剛度元件、非線性阻尼元件、振動測試與采集分析系統(tǒng)的設(shè)計、選型與搭建工作,實現(xiàn)了系統(tǒng)剛度、阻尼的可控、可調(diào),振動量的可實時測量。對提出的含立方剛度和平方阻尼作用的啄木鳥頭部模型系統(tǒng)的動力學(xué)特性進(jìn)行了實驗研究,主要包括系統(tǒng)頻響特性實驗和減振性能實驗等方面。結(jié)果表明:設(shè)計條件下被保護(hù)對象頻響曲線的共振區(qū)狹窄,激勵頻率遠(yuǎn)離共振區(qū)后振動幅值迅速下降,保證了系統(tǒng)在寬頻域內(nèi)始終保持較好的減振效果,測試頻率范圍內(nèi)系統(tǒng)的振動傳遞率可限制在10%以內(nèi),取得了良好的減振效果。試驗獲得的系統(tǒng)頻響曲線與仿真結(jié)果對比分析說明對啄木鳥頭部生物組織的協(xié)同減振作用及動力學(xué)模型理論和數(shù)值分析的結(jié)論是有效的。 在對生物組織非線性特性及其協(xié)同減振作用理論和實驗分析基礎(chǔ)上,仿照啄木鳥頭部喙的非線性剛度、肌肉軟組織的非線性剛度和阻尼、腦脊液的流體阻力等作用設(shè)計了磁流變彈性體單元、可調(diào)阻尼孔空氣彈簧減振單元、粘彈阻尼減振單元,仿照馬腿肢體結(jié)構(gòu)設(shè)計了仿肢體彈簧鉸接減振單元,根據(jù)生物組織的協(xié)同減振作用機(jī)理,提出了仿生減振功能單元的模塊組合設(shè)計方法。并推導(dǎo)了各個仿生減振單元的剛度和阻尼隨結(jié)構(gòu)參數(shù)和外部激勵的變化關(guān)系,給出了各減振單元進(jìn)行組合設(shè)計的原則,以空氣彈簧仿生減振單元和粘彈阻尼仿生減振單元為例,研究了主要結(jié)構(gòu)參數(shù)對單元非線性剛度和阻尼的影響規(guī)律。 針對機(jī)械設(shè)備愈加復(fù)雜的動力學(xué)環(huán)境,以承載大、受多種耦合激勵(負(fù)載激勵、環(huán)境及基礎(chǔ)干擾等)作用的典型機(jī)加工設(shè)備——JA31-160C型閉式單點壓力機(jī)為例,研究運(yùn)用“仿生減振功能單元模塊組合設(shè)計法”法進(jìn)行壓力機(jī)基礎(chǔ)減振裝置設(shè)計的有效性。根據(jù)結(jié)構(gòu)動力修改理論,以負(fù)載激勵、環(huán)境激勵等耦合激振下最小振動傳遞率和固有頻率盡量遠(yuǎn)離共振頻率為雙目標(biāo)函數(shù),提出一種適合多目標(biāo)、可考慮負(fù)載激勵和環(huán)境激勵耦合作用的仿生減振裝置動態(tài)優(yōu)化方法。對優(yōu)化得到的壓力機(jī)基礎(chǔ)仿生減振裝置和壓力機(jī)目前常用的阻尼彈簧減振器和高性能彈性體阻尼模塊進(jìn)行了對比分析,結(jié)果表明:仿生減振裝置可以有效避免目前壓力機(jī)基礎(chǔ)減振結(jié)構(gòu)的設(shè)計先天不足,而且穩(wěn)定性好,抗干擾能力強(qiáng),減振性能較目前常用的減振裝置得到明顯改善。 本課題得到教育部博士學(xué)科點專項科研基金(20110131110043)和山東省科技發(fā)展計劃項目(2011GGX10328)的資助。
[Abstract]:A mass - spring - damping vibration damping device used in mechanical equipment is widely used in mechanical equipment . When subjected to various complex excitation ( such as working load under various working conditions , excitation of different environments , basic disturbance , etc . ) coupling or excitation frequency , the damping effect is obviously deteriorated . Based on the fact that the natural organism can adapt to the strength and frequency of external load , the nonlinear characteristics , vibration damping mechanism and bionic vibration damping device design and optimization method of the biological tissue are studied , and the theory and technical support are provided for the bionic design and application of the vibration damping device in engineering practice .
Based on the nonlinear dynamics and biomechanics theory , the mechanism of synergistic damping between the head tissue and the leg tissue of the woodpecker is illustrated . The synergistic damping effect of the head structure of the woodpecker is shown as follows : under the action of pecking force , the nonlinear elastic force of the head beak , the nonlinear elastic force and the damping force of the soft tissue of the muscle , the fluid resistance of the cerebrospinal fluid can organically cooperate , and the self - standard of protecting the brain to avoid shock damage can be realized in concert .
Based on the theory of incremental harmonic balance , the dynamics model of the head beak , muscle soft tissue , cerebrospinal fluid and horse ' s leg bones , muscle and foot sole of the woodpecker is analyzed , and the frequency response characteristic of the woodpecker ' s brain is calculated .
In this paper , the design , type selection and construction of the system of variable stiffness damping and damping are established , and the design , selection and construction of the system are carried out . The dynamic characteristics of the system stiffness and damping are studied experimentally . The results show that the vibration transfer rate of the system is limited to 10 % . The results show that the system frequency response curve and the simulation results show that the synergistic damping effect of the system and the theoretical analysis of the dynamics model are effective .
On the basis of the theoretical and experimental analysis of the nonlinear characteristics of the biological tissue and its synergistic damping effect , the nonlinear stiffness of the beak of the woodpecker , the nonlinear stiffness and damping of the soft tissue , the fluid resistance of the cerebrospinal fluid are designed .
On the basis of the theory of structural dynamic modification , the minimum vibration transfer rate and natural frequency as far away from the resonant frequency as the double objective function are studied by means of the combined design method of the " bionic vibration damping function unit module " . The results show that the bionic vibration damping device can effectively avoid the design of the foundation vibration damping device and the high performance elastic damping module of the press .
This subject is funded by the Special Scientific Research Fund ( GB 131110043 ) and the Science and Technology Development Plan Project ( 2011GGX10328 ) of Shandong Province .
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TB535.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程偉;林新志;韋璇;;結(jié)構(gòu)仿生材料的研究進(jìn)展[J];材料導(dǎo)報;2009年S1期
2 靳曉雄;肖勇;藺玉輝;朱娜;;空氣彈簧半主動式動力吸振器的研究[J];中國工程機(jī)械學(xué)報;2007年03期
3 劉志成;孫大剛;梁建宗;;氣動人工肌肉仿生行走機(jī)構(gòu)模糊PID控制[J];工程機(jī)械;2012年05期
4 孫大剛,張洪;工程機(jī)械仿生阻尼緩沖行走機(jī)構(gòu)的研究[J];工程機(jī)械與維修;2001年05期
5 陳亞良,傅龍珠,梅德慶,陳子辰;超精密裝置PID振動控制系統(tǒng)的仿真研究[J];工程設(shè)計學(xué)報;2003年01期
6 么鳴濤;顧亮;管繼富;;雙筒式減振器異響試驗分析[J];工程設(shè)計學(xué)報;2010年03期
7 程偉;;仿生阻尼材料研究[J];材料開發(fā)與應(yīng)用;2012年04期
8 謝馳;陳爽;蔡鵬;林大全;王遠(yuǎn)蘋;;仿生皮膚材料的力學(xué)性能測試與分析[J];功能材料;2013年01期
9 張宸維;宋明見;;減振降噪研究的發(fā)展歷程及現(xiàn)狀[J];工程機(jī)械;2011年07期
10 楊愷;崔龍;黃海;;基于動力吸振器的空間桁架多自由度振動抑制[J];北京航空航天大學(xué)學(xué)報;2013年03期
相關(guān)博士學(xué)位論文 前2條
1 王銳;橡膠隔振器動力學(xué)性能及設(shè)計方法研究[D];華中科技大學(xué);2007年
2 宋清華;高速銑削穩(wěn)定性及加工精度研究[D];山東大學(xué);2009年
,本文編號:1993536
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1993536.html