Undaria pinnatifida殘?jiān)疅岱ㄙY源化利用及產(chǎn)物中羥基羧酸分離技術(shù)研究
本文選題:生物質(zhì) + 裙帶菜孢子葉(Undaria ; 參考:《哈爾濱工業(yè)大學(xué)》2017年博士論文
【摘要】:采用水熱液化技術(shù)綜合利用生物質(zhì)殘?jiān)呀?jīng)成為目前研究的熱點(diǎn)課題。本研究以u(píng)ndaria pinnatifida殘?jiān)鼮樵?使用胺類水熱劑對(duì)其進(jìn)行綜合利用,得到了有價(jià)值的植物油基化合物和有機(jī)酸,并從水熱液化液中分離出附加值較高的乳酸和乙醇酸。以u(píng)ndaria pinnatifida殘?jiān)鼮樵?胺類為水熱劑,在反應(yīng)釜中進(jìn)行水熱液化,研究了不同實(shí)驗(yàn)條件對(duì)水熱液化產(chǎn)物分布和組成的影響。利用GC-MS和FT-IR對(duì)水熱液化過(guò)程中的植物油基化合物進(jìn)行分析,結(jié)果表明植物油基化合物的主要成分為棕櫚酸,同時(shí)包含醇類、烷烴類、酮類、酰胺類和苯類衍生物。利用HPLC對(duì)水熱液化過(guò)程中的液相產(chǎn)物進(jìn)行分析,結(jié)果表明液相產(chǎn)物以酸類物質(zhì)為主。進(jìn)一步選出甲胺作為制備乙醇酸的水熱劑,乙胺作為制備乳酸的水熱劑,丙胺作為制備植物油基化合物的水熱劑。通過(guò)對(duì)水熱劑回收的研究,發(fā)現(xiàn)使用回收的胺得到的水熱液化產(chǎn)物分布和各成分組成并未發(fā)生明顯變化。通過(guò)響應(yīng)面法對(duì)甲胺制備乙醇酸、乙胺制備乳酸和丙胺制備植物油基化合物的工藝進(jìn)行優(yōu)化。優(yōu)化后乙醇酸的最高產(chǎn)率達(dá)到36.46g/L,乳酸的最高產(chǎn)率達(dá)到23.77g/L,植物油基化合物的最高產(chǎn)率達(dá)到34.73g/L。根據(jù)植物油基化合物的組成分析了各產(chǎn)物的形成路線,脂肪酸主要由undaria pinnatifida殘?jiān)兄|(zhì)水解得到;烷烴類物質(zhì)主要是溶液中酸、醇等在堿性條件下發(fā)生消去反應(yīng)得到;酮類物質(zhì)主要是葉綠素支鏈斷裂形成。通過(guò)理論計(jì)算分析葡萄糖的空間結(jié)構(gòu)對(duì)胺類水熱劑親核進(jìn)攻的影響,結(jié)果表明甲胺通過(guò)進(jìn)攻葡萄糖碳鏈上的C3位置獲得乙醇酸,乙胺通過(guò)進(jìn)攻碳鏈上C4位置獲得乳酸。選出體積分?jǐn)?shù)100%的TBP、體積分?jǐn)?shù)100%的A101和體積分?jǐn)?shù)40%TOA+60%C 8作為萃取乳酸或乙醇酸的萃取劑。對(duì)萃取的單因素實(shí)驗(yàn)進(jìn)行研究,得到最佳的萃取條件為:萃取溫度25℃、攪拌速度300r/min、攪拌時(shí)間15min、靜置時(shí)間5min。在萃取過(guò)程中,TBP與乳酸或乙醇酸的絡(luò)合方式主要是1:1;40TO A與乳酸或乙醇酸的絡(luò)合方式主要是2:1;A101與乳酸的主要絡(luò)合方式為2:1,與乙醇酸的主要絡(luò)合方式為3:1。萃取過(guò)程中A101和40TO A的吉布斯自由能、熵變和平衡常數(shù)都比TBP高,從熱力學(xué)上解釋了A101和40TOA萃取乳酸或乙醇酸分配比高的原因。經(jīng)過(guò)活性炭進(jìn)行預(yù)處理后,水熱液化液中的雜質(zhì)被有效去除,同時(shí)大部分的乳酸和乙醇酸得以保留。選擇TBP作為萃取水熱液化液中乳酸和乙醇酸的萃取劑。經(jīng)過(guò)5級(jí)錯(cuò)流萃取后,溶液中的乳酸和乙醇酸的含量均低于0.50g/L,萃取率均高于98%;8級(jí)逆流萃取后,溶液中的乳酸和乙醇酸的含量均低于0.50g/L,萃取率均高于98.50%。在反萃工藝研究中發(fā)現(xiàn)高溫有利于反萃,選擇反萃溫度為55℃、反萃相比為2:1,在該條件下單級(jí)乳酸的反萃率達(dá)到34.90%,乙醇酸的反萃率達(dá)到56.51%。通過(guò)5級(jí)逆流反萃,最終乙醇酸的反萃率為99.00%,乳酸的反萃率為75.60%,通過(guò)反萃可以將部分乳酸留在有機(jī)相中,達(dá)到分離乳酸和乙醇酸的目的。在分餾萃取過(guò)程中,通過(guò)串級(jí)理論計(jì)算得出流比的比值,選擇流比為VF:VS:VW=1.50:1:3,萃取級(jí)數(shù)n=12,洗滌級(jí)數(shù)m=5對(duì)水熱液化液進(jìn)行萃取。在萃取溫度25℃、水洗溫度55℃、攪拌速度300r/min的條件下進(jìn)行串級(jí)分離,根據(jù)物料平衡計(jì)算得出乙醇酸的總反萃率達(dá)到99.77%,乳酸的反萃率為67.49%。最終乳酸的純度達(dá)到98.76%,乙醇酸純度為68.94%。有機(jī)相再生研究表明,通過(guò)NaOH再生后的TBP經(jīng)過(guò)兩次水洗后即可循環(huán)使用。本文通過(guò)水熱液化對(duì)生物質(zhì)殘?jiān)M(jìn)行綜合利用,分析了不同胺類水熱劑對(duì)產(chǎn)物的影響,結(jié)合溶劑萃取法對(duì)制備的有機(jī)酸進(jìn)行了分離研究,為實(shí)際工業(yè)應(yīng)用打下了一定的基礎(chǔ)。
[Abstract]:The comprehensive utilization of biomass residue with hydrothermal liquefaction technology has become a hot topic at present. This study uses Undaria pinnatifida residue as raw material and uses amine type hydrothermal agent to synthetically utilize it. The valuable plant oil based compounds and organic acids are obtained, and the higher value added lactic acid is separated from the hydrothermal liquified liquid. Glycolic acid. The effects of different experimental conditions on the distribution and composition of hydrothermal liquefaction products were studied in the reaction kettle with Undaria pinnatifida residue as raw material and amine as hydrothermal agent. The effects of different experimental conditions on the distribution and composition of the products were studied by GC-MS and FT-IR. The results showed that the main oil based compounds were formed. It is divided into palmitic acid, including alcohols, alkanes, ketones, amides, and benzene derivatives. Using HPLC to analyze the liquid products in the process of hydrothermal liquefaction, the results show that the liquid products are mainly acid materials. Methylamine is selected as a hydrothermal agent to prepare glycolic acid. Ethylamine is used as a hydrothermal agent to prepare lactic acid and the preparation of amine as a preparation. A hydrothermal agent of plant oil based compounds. Through the study of the recovery of hydrothermal agents, it was found that the distribution of the products of hydrothermal liquefaction and the composition of the components did not change obviously. The process of preparing the ethanolic acid by the methylamine and the preparation of the oil based compound by lactic acid and amines by the response surface method was optimized. The highest yield of alkyd reached 36.46g/L, the highest yield of lactic acid reached 23.77g/L, the highest yield of plant oil based compounds reached 34.73g/L., according to the composition of plant oil based compounds, the formation route of each product was analyzed. Fatty acids were mainly hydrolyzed from lipid water in Undaria pinnatifida residue, and alkanes were mainly acid and alcohol in solution. The reaction of the ketone material is mainly the formation of the chlorophyll chain fracture. The effect of the spatial structure of glucose on the nucleophilic attack of the amine hydrothermal agent is analyzed theoretically. The results show that methylamine obtains ethylic acid by attacking the C3 position on the glucose carbon chain, and ethylamine is obtained by attacking the C4 position on the carbon chain. Lactic acid. 100% TBP of volume fraction, A101 of volume fraction and 40%TOA+60%C 8 of volume fraction are used as extractant for extraction of lactic acid or glycolic acid. The single factor experiment of extraction is studied. The optimum extraction conditions are as follows: extraction temperature 25, stirring speed 300r/min, mixing time 15min, 5min. in the extraction process, TBP The complexation mode with lactic acid or glycolic acid is mainly 1:1; the complexation mode of 40TO A with lactic acid or glycolic acid is mainly 2:1; the main complexation way of A101 and lactic acid is 2:1. The main complexation way with glycolic acid is the Gibbs free energy of A101 and 40TO A in 3:1. extraction process, and the entropy change constant is higher than that of TBP, and the A101 is thermodynamically explained. And 40TOA extraction of lactic acid or glycolic acid distribution is high. After pretreatment with activated carbon, the impurities in the hydrothermal liquified liquid are effectively removed and most of the lactic acid and glycolic acid are preserved. TBP is selected as extractant for lactic acid and glycolic acid in the extracted hydrothermal liquified liquid. After 5 stages of flow extraction, the lactic acid in the solution and the lactic acid are extracted. The content of glycolic acid is lower than 0.50g/L and the extraction rate is higher than 98%. After 8 stage countercurrent extraction, the content of lactic acid and glycolic acid in the solution is lower than that of 0.50g/L. The extraction rate is higher than that of 98.50%. in the study of the reverse extraction process. The extraction temperature is favorable to the stripping, the extraction temperature is 55, and the reverse extraction is 2:1. The extraction rate of single stage lactic acid is reached. To 34.90%, the stripping rate of glycolic acid reaches 56.51%. through 5 stage countercurrent stripping, finally the stripping rate of glycolic acid is 99%, and the reverse extraction rate of lactic acid is 75.60%. Through the stripping, some lactic acid can be left in the organic phase to separate lactic acid and glycolic acid. In the process of fractionation extraction, the ratio of flow ratio is calculated by cascade theory. The selection flow ratio is VF:VS:VW=1.50:1:3, the extraction series n=12 and the washing series m=5 to extract the hydrothermal liquid. The series separation is carried out at the temperature of 25, 55 and the stirring speed 300r/min, according to the material balance calculation, the total stripping rate of glycolic acid reaches 99.77%, the extraction rate of lactic acid is 67.49%. and the purity of the lactic acid. Up to 98.76%, the study on the regeneration of 68.94%. organic phase with the purity of glycolic acid shows that the TBP regenerated by NaOH can be recycled after two times of water washing. In this paper, the biomass residue was comprehensively utilized by hydrothermal liquefaction, and the effects of different amine hydrothermal agents on the products were analyzed, and the organic acids prepared by solvent extraction were separated. The research laid a foundation for practical industrial application.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ225.4;TQ028
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王天赤,辛顯雙,王宇昕,周百斌,車丕智;乙醇酸甲酯的合成及應(yīng)用[J];化學(xué)與粘合;2003年03期
2 黃光斗,張智,胡兵,龍化云;乙醇酸合成[J];化工時(shí)刊;2005年02期
3 田克勝;王保偉;許根慧;;乙醇酸的合成及應(yīng)用[J];天然氣化工;2006年06期
4 黃光曉;徐艷;趙玉軍;馬新賓;;反相高效液相色譜測(cè)定在乙醇酸甲酯存在下的乙醇酸含量[J];化學(xué)工業(yè)與工程;2012年01期
5 劉德宏;;化學(xué)燙發(fā)藥水淺析[J];廣東化工;1985年04期
6 黃漢生;直接用淀粉制取乙醇酸的工藝[J];現(xiàn)代化工;1987年06期
7 童啟慶;須海榮;;茶葉中乙醇酸氧化酶活性測(cè)定[J];中國(guó)茶葉;1990年03期
8 李錦春;乙醇酸甲酯的合成及其開(kāi)發(fā)前景[J];四川化工與腐蝕控制;1998年06期
9 陳棟梁,瞿美臻,白宇新,于作龍;乙醇酸的合成及應(yīng)用[J];合成化學(xué);2001年03期
10 黃光曉;徐艷;李振花;王汝賢;馬新賓;;乙醇酸甲酯水解制備乙醇酸的反應(yīng)動(dòng)力學(xué)[J];天然氣化工(C1化學(xué)與化工);2012年04期
相關(guān)會(huì)議論文 前6條
1 姜曉春;施云海;;乙醇酸甲酯的合成及應(yīng)用[A];上海市化學(xué)化工學(xué)會(huì)2007年度學(xué)術(shù)年會(huì)論文摘要集[C];2007年
2 王煒軍;李偉;謝克洪;李明啟;;植物乙醇酸氧化酶的雙催化功能及相互調(diào)節(jié)[A];中國(guó)植物生理學(xué)會(huì)全國(guó)學(xué)術(shù)年會(huì)暨成立40周年慶祝大會(huì)學(xué)術(shù)論文摘要匯編[C];2003年
3 程艷玲;龔平;;聚乳酸-乙醇酸熔融共聚物的制備與性能研究[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(5)[C];2007年
4 楊帆;張永明;宋鳳蘭;潘育芳;趙耀明;汪朝陽(yáng);梁世中;徐安龍;;聚乳酸-乙醇酸的直接合成及其在蛋白質(zhì)傳輸系統(tǒng)中的應(yīng)用(英文)[A];“以嶺醫(yī)藥杯”第八屆全國(guó)青年藥學(xué)工作者最新科研成果交流會(huì)論文集[C];2006年
5 張曉東;楊菁;李若凡;程效東;韓曄華;王冬;周夢(mèng)玲;宋存先;;心肌細(xì)胞吞噬聚乳酸——乙醇酸納米粒子的形態(tài)學(xué)實(shí)驗(yàn)[A];解剖學(xué)雜志——中國(guó)解剖學(xué)會(huì)2002年年會(huì)文摘匯編[C];2002年
6 任曉慧;張永亮;劉松財(cái);戴建威;;pcDNA3-GRF微球?qū)ΛH兔生長(zhǎng)的影響[A];動(dòng)物生理生化學(xué)分會(huì)第八次學(xué)術(shù)會(huì)議暨全國(guó)反芻動(dòng)物營(yíng)養(yǎng)生理生化第三次學(xué)術(shù)研討會(huì)論文摘要匯編[C];2004年
相關(guān)重要報(bào)紙文章 前1條
1 邢鵬飛;開(kāi)發(fā)區(qū)年產(chǎn)8000噸乙醇酸項(xiàng)目開(kāi)工建設(shè)[N];通遼日?qǐng)?bào);2013年
相關(guān)博士學(xué)位論文 前2條
1 陳泳興;Undaria pinnatifida殘?jiān)疅岱ㄙY源化利用及產(chǎn)物中羥基羧酸分離技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2017年
2 徐軍;富苯丙氨酸堿性短肽的發(fā)現(xiàn)及其對(duì)蛋白質(zhì)等電點(diǎn)和免疫交叉反應(yīng)的影響[D];華南理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 陳曲;乙醇酸甲酯均相催化水解過(guò)程研究[D];天津大學(xué);2014年
2 陳焰飛;氣相草酸二甲酯催化加氫制乙醇酸甲酯:Ag-CuO_x/Ni-foam催化劑的原電池反應(yīng)制備及催化性能[D];華東師范大學(xué);2017年
3 張輝輝;乙醇酸甲酯水解制備乙醇酸的研究[D];華東理工大學(xué);2015年
4 高雪莉;乙醇酸的合成工藝研究[D];河北工業(yè)大學(xué);2014年
5 張超;乙醇酸甲酯水解制乙醇酸工藝過(guò)程開(kāi)發(fā)[D];華東理工大學(xué);2014年
6 徐進(jìn);電滲析膜分離提純制備高純度乙醇酸的研究[D];浙江大學(xué);2005年
7 韓翔;乙醇酸甲酯的合成與分離[D];華東理工大學(xué);2012年
8 吳旭亞;乙醇酸氧化酶基因在畢赤氏酵母中的表達(dá)[D];南京工業(yè)大學(xué);2003年
9 顏樂(lè);一步法制備乙醇酸甲酯的反應(yīng)研究[D];華東理工大學(xué);2011年
10 李旺;乙醇酸的自聚與共聚合及產(chǎn)物的應(yīng)用研究[D];江南大學(xué);2014年
,本文編號(hào):1985819
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1985819.html